CSE 332: Data Structures & Parallelism

Lecture 19: Introduction to Graphs

Ruth Anderson
Autumn 2017
Today

- Graphs
 - Intro & Definitions
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \[(v_j, v_k) \]
 - An edge “connects” the vertices

- Graphs can be directed or undirected
An ADT?

- Can think of graphs as an ADT with operations like $\text{isEdge}(v_j, v_k)$
- But it is unclear what the “standard operations” are
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs
Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Wow: Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”
Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

- Thus, $(u, v) \in E$ implies $(v, u) \in E$.
 - Only one of these edges needs to be in the set; the other is implicit

- **Degree** of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
 - Let \((u, v) \in E\) mean \(u \rightarrow v\)
 - Call \(u\) the source and \(v\) the destination

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination

- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
Self-edges, connectedness

- A **self-edge** a.k.a. a **loop** is an edge of the form \((u, u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (often therefore implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of **zero**

- A graph does not have to be **connected** (in an undirected graph, this means we can follow edges from any node to every other node), even if every node has non-zero degree
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
 - $V = \{A, B, C, D\}$
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

11/20/2017
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected? $|V| \cdot |V+1|/2 \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (For both undirected and directed, assuming self-edges are allowed, else subtract $|V|$ from the answers above)

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$
Examples again

Which would use directed edges? Which would have self-edges? Which could have 0-degree nodes?

✓ Web pages with links
✓ Facebook friends
✓ “Input data” for the Kevin Bacon game
✓ Methods in a program that call each other
✓ Road maps (e.g., Google maps)
✓ Airline routes
✓ Family trees
✓ Course pre-requisites
✓ ...
Weighted graphs

- In a weighed graph, each edge has a **weight** a.k.a. **cost**
 - Typically numeric (most examples will use ints)
 - **Orthogonal** to whether graph is directed
 - Some graphs allow **negative weights**; many don’t

```
Clinton  20  Mukilteo

Kingston  30  Edmonds

Bainbridge  35  Seattle

Bremerton  60
```

11/20/2017
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

11/20/2017
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, \ldots, v_n]\) such that
 \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say “a path from \(v_0\) to \(v_n\)”

- A **cycle** is a path that begins and ends at the same node \((v_0 == v_n)\)

Example path (that also happens to be a cycle):
[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of edges in a path (also called “unweighted cost”)
- **Path cost**: Sum of the weights of each edge

Example where:

\[P = [\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco}] \]

length(\(P \)) = 4

\[\text{cost}(P) = 9.5 \]
Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
Undirected graph connectivity

- An undirected graph is connected if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \).

- An undirected graph is complete, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \).
Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex **ignoring direction of edges**.

- A **complete a.k.a. fully connected** directed graph has an edge from every vertex to every other vertex **(plus self edges)**.
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...
Trees as graphs

When talking about graphs, we say a **tree** is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Example:

```
  D -- E
   |    |
   B -- A  
    |    |
   C -- F
    |    |
   G -- H
```
Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as **directed**: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Rooted Trees (Another example)

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges as directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)
Directed acyclic graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree:

- Every DAG is a directed graph
 - But not every directed graph is a DAG:
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- ...
Density / sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $|E|$ is $O(|V|^2)$
- One more fact: If an undirected graph is connected, then $|E| \geq |V| - 1$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate as $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E|$ is $\Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means “most (possible) edges missing”
What is the Data Structure?

- So graphs are really useful for lots of data and questions
 - For example, “what’s the lowest-cost path from x to y”

- But we need a data structure that represents graphs

- The “best one” can depend on:
 - Properties of the graph (e.g., dense versus sparse)
 - The common queries (e.g., “is \((u, v) \) an edge?” versus “what are the neighbors of node \(u \)?”)

- So we’ll discuss the two standard graph representations
 - Adjacency Matrix and Adjacency List
 - Different trade-offs, particularly time versus space
Adjacency matrix

- Assign each node a number from 0 to $|V| - 1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v] = \text{true}$ means there is an edge from u to v

\[
\begin{array}{cccc}
A & B & C & D \\
\hline
A & F & T & F & F \\
B & T & F & F & F \\
C & F & T & F & T \\
D & F & F & F & F \\
\end{array}
\]
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- Best for sparse or dense graphs?
 - Best for dense graphs
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected* graph?

- How can we adapt the representation for *weighted* graphs?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
 - Undirected will be symmetric about diagonal axis

- How can we adapt the representation for *weighted graphs*?
 - Instead of a Boolean, store a number in each cell
 - Need some value to represent ‘not an edge’
 - In some situations, 0 or -1 works

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>32</td>
</tr>
</tbody>
</table>
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 - Get all of a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:
- Space requirements:
- Best for dense or sparse graphs?
Adjacency List Properties

- Running time to:
 - Get all of a vertex’s out-edges:
 \(O(d) \) where \(d \) is out-degree of vertex
 - Get all of a vertex’s in-edges:
 \(O(|V| + |E|) \) (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 \(O(d) \) where \(d \) is out-degree of source
 - Insert an edge: \(O(1) \) (unless you need to check if it’s there)
 - Delete an edge: \(O(d) \) where \(d \) is out-degree of source

- Space requirements:
 - \(O(|V| + |E|) \)

- Best for dense or sparse graphs?
 - **Best for sparse graphs**, so usually just stick with linked lists

11/20/2017
Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- **Matrix**: Can save roughly ½ the space
 - But may slow down operations in languages with “proper” 2D arrays (not Java, which has only arrays of arrays)
 - How would you “get all neighbors”?
- **Lists**: Each edge in two lists to support efficient “get all neighbors”

Example:

```
11/20/2017  36
```
Which is better?

Graphs are often sparse:

- Streets form grids
 - every corner is not connected to every other corner
- Airlines rarely fly to all possible cities
 - or if they do it is to/from a hub rather than directly to/from all small cities to other small cities

Adjacency lists should generally be your default choice

- Slower performance compensated by greater space savings
Next...

Okay, we can represent graphs.

Now let’s implement some useful and non-trivial algorithms:

- **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors.

- **Shortest paths**: Find the shortest or lowest-cost path from x to y.
 - Related: Determine if there even is such a path.