
CSE 332: Data Structures & Parallelism

Lecture 17: Shared-Memory Concurrency &

Mutual Exclusion

Ruth Anderson

Autumn 2017

Toward sharing resources (memory)

So far, we have been studying parallel algorithms using the fork-join model

– Reduce span via parallel tasks

Fork-Join algorithms all had a very simple structure to avoid race conditions

– Each thread had memory “only it accessed”

• Example: each array sub-range accessed by only one thread

– Result of forked process not accessed until after join() called

– So the structure (mostly) ensured that bad simultaneous access

wouldn’t occur

Strategy won’t work well when:

– Memory accessed by threads is overlapping or unpredictable

– Threads are doing independent tasks needing access to same

resources (rather than implementing the same algorithm)

211/15/2017

Each thread accesses a different sub-range of the

array: Array is shared, but no overlap
class SumTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute

directly

int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task);

11/15/2017 3

Really sharing memory between Threads

Heap for all objects

and static fields, shared

by all threads
2 Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

11/15/2017 4

Sharing a Queue….

• Imagine 2 threads, running at the same time,

• both with access to a shared linked-list based queue (initially empty)

enqueue(x) {

if(back==null){

back=new Node(x);

front=back;

}

else{

back.next = new Node(x);

back = back.next;

}

}

11/15/2017 5

Concurrent Programming

Concurrency: Correctly and efficiently managing access to shared

resources from multiple possibly-simultaneous clients

Requires coordination, particularly synchronization to avoid incorrect

simultaneous access: make somebody block (wait) until the resource

is free

– join is not what we want

– Want to block until another thread is “done using what we need”

not “completely done executing”

Even correct concurrent applications are usually highly non-deterministic

– how threads are scheduled affects what operations happen first

– non-repeatability complicates testing and debugging

711/15/2017

Concurrency Examples

What if we have multiple threads:

1. Processing different bank-account operations

– What if 2 threads change the same account at the same time?

2. Using a shared cache (e.g., hashtable) of recent files

– What if 2 threads insert the same file at the same time?

3. Creating a pipeline (think assembly line) with a queue for handing

work from one thread to next thread in sequence?

– What if enqueuer and dequeuer adjust a circular array queue

at the same time?

811/15/2017

Why threads?

Unlike parallelism, not about implementing algorithms faster

But threads still useful for:

• Code structure for responsiveness

– Example: Respond to GUI events in one thread while

another thread is performing an expensive computation

• Processor utilization (mask I/O latency)

– If 1 thread “goes to disk,” have something else to do

• Failure isolation

– Convenient structure if want to interleave multiple tasks and

do not want an exception in one to stop the other

911/15/2017

Sharing, again

It is common in concurrent programs that:

• Different threads might access the same resources in an

unpredictable order or even at about the same time

• Program correctness requires that simultaneous access be

prevented using synchronization

• Simultaneous access is rare

– Makes testing difficult

– Must be much more disciplined when designing /

implementing a concurrent program

– Will discuss common idioms known to work

1011/15/2017

Canonical example

Correct code in a single-threaded world

11

class BankAccount {

private int balance = 0;

int getBalance() { return balance; }

void setBalance(int x) { balance = x; }

void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

… // other operations like deposit, etc.

}

11/15/2017

Interleaving

Suppose:

– Thread T1 calls x.withdraw(100)

– Thread T2 calls y.withdraw(100)

If second call starts before first finishes, we say the calls interleave

– Could happen even with one processor since a thread can

be pre-empted at any point for time-slicing

• e.g. T1 runs for 50 ms, pauses somewhere, T2 picks up

for 50ms

If x and y refer to different accounts, no problem

– “You cook in your kitchen while I cook in mine”

– But if x and y alias, possible trouble…

1211/15/2017

Activity: What is the balance at the end?

Two threads both trying to withdraw() from the same account:

• Assume initial balance 150

class BankAccount {

private int balance = 0;

int getBalance() { return balance; }

void setBalance(int x) { balance = x; }

void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

}

… // other operations like deposit, etc.

}

x.withdraw(100);

Thread 1

x.withdraw(75);

Thread 2

11/15/2017 13

Activity: A bad interleaving
Interleaved withdraw() calls on the same account

– Assume initial balance == 150

– This should cause a WithdrawTooLarge exception

14

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1: withdraw(100) Thread 2: withdraw(75)

T
im

e

11/15/2017

Activity: A “good” execution is also possible
Interleaved withdraw() calls on the same account

– Assume initial balance == 150

– This should cause a WithdrawTooLarge exception

15

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1: withdraw(100) Thread 2: withdraw(75)

T
im

e

11/15/2017

Example: A bad interleaving
Interleaved withdraw(100) calls on the same account

– Assume initial balance == 150

– This should cause a WithdrawTooLarge exception

16

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

11/15/2017

A bad fix, Another bad interleaving
Two threads both trying to withdraw(100) from the same account:

• Assume initial balance 150

• This should cause a WithdrawTooLarge exception

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(b – amount);

11/15/2017 17

Still a bad fix, Another bad interleaving
Two threads both trying to withdraw(100) from the same account:

• Assume initial balance 150

• This should cause a WithdrawTooLarge exception

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(getBalance() –
amount);

Thread 1 Thread 2

T
im

e

int b = getBalance();

if(amount > getBalance())

throw new …;

setBalance(getBalance() –
amount);

In all 3 of these examples,

instead of an exception,

we have a “Lost withdraw”11/15/2017 18

Incorrect “fix”

It is tempting and almost always wrong to fix a bad interleaving by

rearranging or repeating operations, such as:

19

void withdraw(int amount) {

if(amount > getBalance())

throw new WithdrawTooLargeException();

// maybe balance changed

setBalance(getBalance() – amount);

}

This fixes nothing!

• Narrows the problem by one statement

• (Not even that since the compiler could turn it back into the

old version because you didn’t indicate need to synchronize)

• And now a negative balance is possible – why?

11/15/2017

What we want: Mutual exclusion

The fix: Allow at most one thread to withdraw from account A at a time

– Exclude other simultaneous operations on A too (e.g., deposit)

Called mutual exclusion:

• One thread using a resource (here: a bank account) means another

thread must wait

• We call the area of code that we want to have mutual exclusion

(only one thread can be there at a time) a critical section.

Programmer (you!) must implement critical sections:

– “The compiler” has no idea what interleavings should or should

not be allowed in your program

– But you need language primitives to do it!

2011/15/2017

Why is this Wrong?
Why can’t we implement our own mutual-exclusion protocol?

– Say we tried to coordinate it ourselves using a boolean variable – “busy”

– It’s technically possible under certain assumptions, but won’t work in real languages anyway

21

class BankAccount {

private int balance = 0;

private boolean busy = false;

void withdraw(int amount) {

while(busy) { /* “spin-wait” */ }

busy = true;

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

busy = false;

}

// deposit would spin on same boolean

}

11/15/2017

Still just moved the problem!

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)

throw new …;

setBalance(b – amount);

Thread 1 Thread 2

T
im

e

“Lost withdraw” –

unhappy bank

Time elapses between checking busy and setting busy = true

A thread can be interrupted there, allowing another thread to “sneak in”.

Busy is initially = false

11/15/2017 22

What we need
There are many ways out of this conundrum,

but we need help from the programming language…

One solution: Mutual-Exclusion Locks (aka Mutex, or just Lock)
• Still on a conceptual level at the moment, ‘Lock’ is not a Java class (though Java’s approach is similar)

We will define Lock as an ADT with operations:

• new: make a new lock, initially “not held”

• acquire: blocks if this lock is already currently “held”

– Once “not held”, makes lock “held” [all at once!]

– Checking & setting happen together, and cannot be

interrupted

– Fixes problem we saw before!!

• release: makes this lock “not held”

– If >= 1 threads are blocked on it, exactly 1 will acquire it

2311/15/2017

Why that works

• A Lock ADT with operations new, acquire, release

• The lock implementation ensures that given simultaneous

acquires and/or releases, a correct thing will happen

– Example:

• If we have two acquires: one will “win” and one will block

• How can this be implemented?

– Need to “check if held and if not make held” “all-at-once”

– Uses special hardware and O/S support

• See computer-architecture or operating-systems course

– In CSE 332, we take this as a primitive and use it

2411/15/2017

Almost-correct pseudocode

25

class BankAccount {

private int balance = 0;

private Lock lk = new Lock();

…

void withdraw(int amount) {

lk.acquire(); // may block

int b = getBalance();

if(amount > b)

throw new WithdrawTooLargeException();

setBalance(b – amount);

lk.release();

}

// deposit would also acquire/release lk

}

11/15/2017

Note: ‘Lock’ is not an

actual Java class

Questions about the previous slide

1. Where is the critical section?

2. How many locks do we need?

a) One lock per BankAccount object?

b) Two locks per BankAccount object? (one lock for

withdraw and one lock for deposit)

c) One lock for the entire class?

3. There is a bug in withdraw(), can you find it?

4. Do we need locks for:

a) getBalance?

b) setBalance?

11/15/2017 26

Other operations

• If withdraw and deposit use the same lock, then

simultaneous calls to these methods are properly synchronized

• But what about getBalance and setBalance?

– Assume they are public, which may be reasonable

• If they do not acquire the same lock, then a race between
setBalance and withdraw could produce a wrong result

• If they do acquire the same lock, then withdraw would block

forever because it tries to acquire a lock it already has!

2811/15/2017

One (not very good) possibility

Have two versions of setBalance!

• withdraw calls setBalance1

(since it already has the lock)

• Outside world calls
setBalance2

• Could work (if adhered to), but
not good style; also not very
convenient

• Alternately, we can modify the
meaning of the Lock ADT to
support re-entrant locks

– Java does this

– Then just always use
setBalance2

int setBalance1(int x) {

balance = x;

}

int setBalance2(int x) {

lk.acquire();

balance = x;

lk.release();

}

void withdraw(int amount) {

lk.acquire();

…

setBalance1(b – amount);

lk.release();

}

11/15/2017 29

Re-entrant lock idea

A re-entrant lock (a.k.a. recursive lock)

• The idea: Once acquired, the lock is held by the Thread, and
subsequent calls to acquire in that Thread won’t block

• Result: withdraw can acquire the lock, and then call

setBalance, which can also acquire the lock

– Because they’re in the same thread & it’s a re-entrant lock,
the inner acquire won’t block!!

11/15/2017 30

Re-entrant lock

A re-entrant lock (a.k.a. recursive lock)

• “Remembers”

– the thread (if any) that currently holds it

– a count

• When the lock goes from not-held to held, the count is set to 0

• If (code running in) the current holder calls acquire :

– it does not block

– it increments the count

• On release :

– if the count is > 0, the count is decremented

– if the count is 0, the lock becomes not-held

3111/15/2017

Re-entrant locks work

This simple code works fine
provided lk is a reentrant lock

• Okay to call setBalance

directly

• Okay to call withdraw

(won’t block forever)

32

int setBalance(int x) {

lk.acquire();

balance = x;

lk.release();

}

void withdraw(int amount) {

lk.acquire();

…

setBalance(b – amount);

lk.release();

}

11/15/2017

Java’s Re-entrant Lock

• java.util.concurrent.locks.ReentrantLock

• Has methods lock() and unlock()

• As described above, it is conceptually owned by the Thread,

and shared within that thread

• Important to guarantee that lock is always released!!!

• Recommend something like this:

myLock.lock();

try { // method body }

finally { myLock.unlock(); }

• Despite what happens in ‘try’, the code in finally will

execute afterwards

11/15/2017 33

Synchronized: A Java convenience

Java has built-in support for re-entrant locks

– You can use the synchronized statement as an

alternative to declaring a ReentrantLock

synchronized (expression) {

statements

}

1. Evaluates expression to an object

• Every object (but not primitive types) “is a lock” in Java

2. Acquires the lock, blocking if necessary

• “If you get past the {, you have the lock”

3. Releases the lock “at the matching }”

• Even if control leaves due to throw, return, etc.

• So impossible to forget to release the lock!

11/15/2017 34

Java version #1 (correct but can be improved)

35

class BankAccount {

private int balance = 0;

private Object lk = new Object();

int getBalance()

{ synchronized (lk) { return balance; } }

void setBalance(int x)

{ synchronized (lk) { balance = x; } }

void withdraw(int amount) {

synchronized (lk) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit would also use synchronized(lk)

}

11/15/2017

Improving the Java

• As written, the lock is private

– Might seem like a good idea

– But also prevents code in other classes from writing

operations that synchronize with the account operations

• More idiomatic is to synchronize on this…

– Also more convenient: no need to have an extra object!

3611/15/2017

Java version #2

37

class BankAccount {

private int balance = 0;

int getBalance()

{ synchronized (this){ return balance; } }

void setBalance(int x)

{ synchronized (this){ balance = x; } }

void withdraw(int amount) {

synchronized (this) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

}

// deposit would also use synchronized(this)

}

11/15/2017

Syntactic sugar

Version #2 is slightly poor style because there is a shorter way to

say the same thing:

Putting synchronized before a method declaration means the

entire method body is surrounded by

synchronized(this){…}

Therefore, version #3 (next slide) means exactly the same thing

as version #2 but is more concise

3811/15/2017

Java version #3 (final version)

39

class BankAccount {

private int balance = 0;

synchronized int getBalance()

{ return balance; }

synchronized void setBalance(int x)

{ balance = x; }

synchronized void withdraw(int amount) {

int b = getBalance();

if(amount > b)

throw …

setBalance(b – amount);

}

// deposit would also use synchronized

}

11/15/2017

More Java notes

• Class java.util.concurrent.locks.ReentrantLock

works much more like our pseudocode

– Often use try { … } finally { … } to avoid forgetting

to release the lock if there’s an exception

• Also library and/or language support for readers/writer locks and

condition variables (see Grossman notes)

• Java provides many other features and details. See, for

example:

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

– Java Concurrency in Practice by Goetz et al

4011/15/2017

