
CSE 332: Data Structures & Parallelism

Lecture 14: Introduction to Multithreading &

Fork-Join Parallelism

Ruth Anderson

Autumn 2017

Changing a major assumption

So far most or all of your study of computer science has assumed

One thing happened at a time

Called sequential programming – everything part of one sequence

Removing this assumption creates major challenges & opportunities

– Programming: Divide work among threads of execution and

coordinate (synchronize) among them

– Algorithms: How can parallel activity provide speed-up

(more throughput: work done per unit time)

– Data structures: May need to support concurrent access

(multiple threads operating on data at the same time)

211/1/2017

A simplified view of history

Writing correct and efficient multithreaded code is often much more

difficult than for single-threaded (i.e., sequential) code

– Especially in common languages like Java and C

– So typically stay sequential if possible

From roughly 1980-2005, desktop computers got exponentially

faster at running sequential programs

– About twice as fast every couple years

But nobody knows how to continue this

– Increasing clock rate generates too much heat

– Relative cost of memory access is too high

– But we can keep making “wires exponentially smaller”

(Moore’s “Law”), so put multiple processors on the same

chip (“multicore”)

311/1/2017

What to do with multiple processors?

• Next computer you buy will likely have 4 processors

– Wait a few years and it will be 8, 16, 32, …

– The chip companies have decided to do this (not a “law”)

• What can you do with them?

– Run multiple totally different programs at the same time

• Already do that? Yes, but with time-slicing

– Do multiple things at once in one program

• Our focus – more difficult

• Requires rethinking everything from asymptotic

complexity to how to implement data-structure operations

411/1/2017

Parallelism vs. Concurrency

Note: Terms not yet standard but the perspective is essential

– Many programmers confuse these concepts

5

There is some connection:

– Common to use threads for both

– If parallel computations need access to shared resources,

then the concurrency needs to be managed

Parallelism:

Use extra resources to

solve a problem faster

resources

Concurrency:

Correctly and efficiently manage

access to shared resources

requestswork

resource

11/1/2017

An analogy

CS1 idea: A program is like a recipe for a cook

– One cook who does one thing at a time! (Sequential)

Parallelism: (Let’s get the job done faster!)

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency: (We need to manage a shared resource)

– Lots of cooks making different things, but only 4 stove burners

– Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

611/1/2017

Parallelism Example

Parallelism: Use extra computational resources to solve a problem

faster (increasing throughput via simultaneous execution)

Pseudocode (not Java yet) for array sum:

– No such ‘FORALL’ construct, but we’ll see something similar

– Bad style, but with 4 processors may get roughly 4x speedup

7

int sum(int[] arr){
res = new int[4];
len = arr.length;
FORALL(i=0; i < 4; i++) { //parallel iterations
res[i] = sumRange(arr,i*len/4,(i+1)*len/4);

}
return res[0]+res[1]+res[2]+res[3];

}
int sumRange(int[] arr, int lo, int hi) {

result = 0;
for(j=lo; j < hi; j++)

result += arr[j];
return result;

}

11/1/2017

Concurrency Example

Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)
Ex: Multiple threads accessing a hash-table, but not getting in each others’ ways

Pseudocode (not Java) for a shared chaining hashtable

– Essential correctness issue is preventing bad interleavings

– Essential performance issue not preventing good concurrency
• One ‘solution’ to preventing bad inter-leavings is to do it all sequentially

8

class Hashtable<K,V> {
…
void insert(K key, V value) {

int bucket = …;
prevent-other-inserts/lookups in table[bucket]
do the insertion
re-enable access to table[bucket]

}
V lookup(K key) {

(similar to insert, but can allow concurrent
lookups to same bucket)

}
}

11/1/2017

Shared memory with Threads

The model we will assume is shared memory with explicit threads

Old story: A running program has

– One program counter (current statement executing)

– One call stack (with each stack frame holding local variables)

– Objects in the heap created by memory allocation (i.e., new)

• (nothing to do with data structure called a heap)

– Static fields

New story:

– A set of threads, each with its own program counter & call stack

• No access to another thread’s local variables

– Threads can (implicitly) share static fields / objects

• To communicate, write values to some shared location that

another thread reads from
911/1/2017

Old Story : one call stack, one pc

10

…

Heap for all objects

and static fields
•Call stack with local variables

•pc determines current statement

•local variables are numbers/null

or heap references

pc=0x…

…

10

New Story: Shared memory with Threads

…

Heap for all objects

and static fields, shared

by all threads
Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

11

Other models

We will focus on shared memory, but you should know several

other models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.

Communication is via explicitly sending/receiving messages

– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.

A node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function

to every element of an array in parallel”

1211/1/2017

Our Needs

To write a shared-memory parallel program, need new primitives

from a programming language or library

• Ways to create and run multiple things at once

– Let’s call these things threads

• Ways for threads to share memory

– Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)

– For now, a way for one thread to wait for another to finish

– Other primitives when we study concurrency

1311/1/2017

Java basics

First learn some basics built into Java via java.lang.Thread

– Then a better library for parallel programming

To get a new thread running:

1. Define a subclass C of java.lang.Thread, overriding run

2. Create an object of class C

3. Call that object’s start method

• start sets off a new thread, using run as its “main”

What if we instead called the run method of C?

– This would just be a normal method call, in the current thread

Let’s see how to share memory and coordinate via an example…

1411/1/2017

Parallelism idea

• Example: Sum elements of a large array

• Idea: Have 4 threads simultaneously sum 1/4 of the array

– Warning: This is an inferior first approach

ans0 ans1 ans2 ans3

+

ans

– Create 4 thread objects, each given a portion of the work

– Call start() on each thread object to actually run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

1511/1/2017

First attempt, part 1

16

class SumThread extends java.lang.Thread {

int lo; // fields, assigned in the constructor
int hi; // so threads know what to do.
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)
ans += arr[i];

}
}

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads

11/1/2017

First attempt, continued (wrong)

17

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

11/1/2017

Second attempt (still wrong)

18

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start not run

}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

11/1/2017

Third attempt (correct in spirit)

19

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

11/1/2017

Join: Our “wait” method for Threads

• The Thread class defines various methods you could not

implement on your own

– For example: start, which calls run in a new thread

• The join method is valuable for coordinating this kind of

computation

– Caller blocks until/unless the receiver is done executing
(meaning the call to run finishes)

– Else we would have a race condition on ts[i].ans

• This style of parallel programming is called “fork/join”

• Java detail: code has 1 compile error because join may throw

java.lang.InterruptedException

– In basic parallel code, should be fine to catch-and-exit

2011/1/2017

Shared memory?

• Fork-join programs (thankfully) do not require much focus on

sharing memory among threads

• But in languages like Java, there is memory being shared.

In our example:

– lo, hi, arr fields written by “main” thread, read by helper

thread

– ans field written by helper thread, read by “main” thread

• When using shared memory, you must avoid race conditions

– While studying parallelism, we’ll stick with join

– With concurrency, we will learn other ways to synchronize

2111/1/2017

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms

– “Forward-portable” as core count grows

– So at the very least, parameterize by the number of threads

22

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();
}
for(int i=0; i < numTs; i++) {
ts[i].join();
ans += ts[i].ans;

}
return ans;

}

11/1/2017

A Better Approach

2. Want to use (only) processors “available to you now”

– Not used by other programs or threads in your program

• Maybe caller is also using parallelism

• Available cores can change even while your threads run

– If you have 3 processors available and using 3 threads would
take time X, then creating 4 threads would take time 1.5X

• Example: 12 units of work, 3 processors

– Work divided into 3 parts will take 4 units of time

– Work divided into 4 parts will take 3*2 units of time

23

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
…

}

11/1/2017

A Better Approach

3. Though unlikely for sum, in general subproblems may take

significantly different amounts of time

– Example: Apply method f to every array element, but maybe

f is much slower for some data items

• Example: Is a large integer prime?

– If we create 4 threads and all the slow data is processed by 1

of them, we won’t get nearly a 4x speedup

• Example of a load imbalance

2411/1/2017

The counterintuitive (?) solution to all these problems is to cut up our

problem into many pieces, far more than the number of processors

– But this will require changing our algorithm

– And for constant-factor reasons, abandoning Java’s threads

A Better Approach

25

ans0 ans1 … ansN

ans

1. Forward-portable: Lots of helpers each doing a small piece

2. Processors available: Hand out “work chunks” as you go

• If 3 processors available and have 100 threads, then ignoring

constant-factor overheads, extra time is < 3%

3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small

11/1/2017

Naïve algorithm is poor

Suppose we create 1 thread to process every 1000 elements

26

int sum(int[] arr){
…
int numThreads = arr.length / 1000;
SumThread[] ts = new SumThread[numThreads];
…

}

Then the “combining of results” part of the code will have
arr.length / 1000 additions

• Linear in size of array (with constant factor 1/1000)

• Previous we had only 4 pieces (Ө(1) to combine)

• In the extreme, suppose we create one thread per element – If

we use a for loop to combine the results, we have N iterations

• In either case we get a Ө(N) algorithm with the combining of

results as the bottleneck….
11/1/2017

A better idea: Divide and Conquer!

This will start small, and ‘grow’ threads to fit the problem

This is straightforward to implement using divide-and-conquer

– Parallelism for the recursive calls
27

+ + + + + + + +

+ + + +

+ +

+

11/1/2017

1) Divide problem into pieces recursively:

– Start with full problem at root

– Halve and make new thread until size is at some cutoff

2) Combine answers in pairs as we return from recursion (see diagram)

Remember Mergesort?

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

28

Code looks something like this (still using Java Threads)

The key is to do the result-combining in parallel as well

– And using recursive divide-and-conquer makes this natural

– Easier to write and more efficient asymptotically!

29

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // fields to know what to do
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ // override
if(hi – lo < SEQUENTIAL_CUTOFF)
for(int i=lo; i < hi; i++)
ans += arr[i];

else {
SumThread left = new SumThread(arr,lo,(hi+lo)/2);
SumThread right= new SumThread(arr,(hi+lo)/2,hi);
left.start();
right.start();
left.join(); // don’t move this up a line – why?
right.join();
ans = left.ans + right.ans;

}
}

}
int sum(int[] arr){ // just make one thread!

SumThread t = new SumThread(arr,0,arr.length);
t.run();
return t.ans;

} 11/1/2017

Divide-and-conquer really works

• The key is divide-and-conquer parallelizes the result-combining

– If you have enough processors, total time is height of the tree:
O(log n) (optimal, exponentially faster than sequential O(n))

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style

– But using a special library engineered for this style

• Takes care of scheduling the computation well

– Often relies on operations being associative (like +)

30

+ + + + + + + +

+ + + +

+ +

+
11/1/2017

Thread: sum range [0,10)

Thread: sum range [0,5)

Thread: sum range [0,2)

Thread: sum range [0,1) (return arr[0])

Thread: sum range [1,2) (return arr[1])

add results from two helper threads

Thread: sum range [2,5)

Thread: sum range [2,3) (return arr[2])

Thread: sum range [3,5)

Thread: sum range [3,4) (return arr[3])

Thread: sum range [4,5) (return arr[4])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Thread: sum range [5,10)

Thread: sum range [5,7)

Thread: sum range [5,6) (return arr[5])

Thread: sum range [6,7) (return arr[6])

add results from two helper threads

Thread: sum range [7,10)

Thread: sum range [7,8) (return arr[7])

Thread: sum range [8,10)

Thread: sum range [8,9) (return arr[8])

Thread: sum range [9,10) (return arr[9])

add results from two helper threads

add results from two helper threads

add results from two helper threads

Example: summing

an array with 10 elements.

(too small to actually want to

use parallelism)

The algorithm produces the

following tree of recursion,

where the range [i,j)

includes i and excludes j:

31

Recursive problem decomposition

Being realistic

• In theory, you can divide down to single elements, do all your

result-combining in parallel and get optimal speedup

– Total time O(n / numProcessors + log n)

• In practice, creating all those threads and communicating

swamps the savings, so do two things to help:

1. Use a sequential cutoff, typically around 500-1000

• Eliminates almost all the recursive thread creation

(bottom levels of tree)

• Exactly like quicksort switching to insertion sort for small

subproblems, but more important here

2. Do not create two recursive threads; create one thread and

do the other piece of work “yourself”

• Cuts the number of threads created by another 2x

3211/1/2017

Half the threads!

• If a language had built-in support for fork-join parallelism, I

would expect this hand-optimization to be unnecessary

• But the library we are using expects you to do it yourself

– And the difference is surprisingly substantial

• Again, no difference in theory

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines
Is critical – why?

Note: run is a

normal function call!

execution won’t

continue until we

are done with run

33

Fewer threads pictorially

34

+

5
+

3

+

6

+

2

+

7
+

4

+

8

+

1
+

3

+

2

+

4

+

1
+

2

+

1+

1

2 new

threads

at each step

(and only leaf threads

do much work)

Total = 15 threads

1 new

thread

at each step

Total = 8 threads

+

8
+

9

+

10

+

11

+

12

+

13

+

14
+

15
+

4

+

5

+

6

+

7
+

2

+

3+

1

11/1/2017

That library, finally

• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism

– In the Java 7 standard libraries

• (Also available for Java 6 as a downloaded .jar file)

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

– Library’s implementation is a fascinating but advanced topic

3511/1/2017

Different terms, same basic idea

To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Java Threads: ForkJoin Framework:

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):

“A Beginner’s Introduction to the ForkJoin Framework”

3611/1/2017

Fork Join Framework Version: (missing imports)

37

class SumTask extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // fields to know what to do
SumTask(int[] a, int l, int h) { … }
protected Integer compute(){// return answer
if(hi – lo < SEQUENTIAL_CUTOFF) {
int ans = 0; // local var, not a field
for(int i=lo; i < hi; i++)
ans += arr[i];

return ans;
} else {
SumTask left = new SumTask(arr,lo,(hi+lo)/2);
SumTask right= new SumTask(arr,(hi+lo)/2,hi);
left.fork(); // fork a thread and calls compute
int rightAns = right.compute();//call compute directly
int leftAns = left.join(); // get result from left
return leftAns + rightAns;

}
}

}
static final ForkJoinPool POOL = new ForkJoinPool();
int sum(int[] arr){

SumTask task = new SumTask(arr,0,arr.length)
return POOL.invoke(task);

// invoke returns the value compute returns
} 11/1/2017

Getting good results in practice

• Sequential threshold

– Library documentation recommends doing approximately

100-5000 basic operations in each “piece” of your algorithm

• Library needs to “warm up”

– May see slow results before the Java virtual machine re-

optimizes the library internals

– Put your computations in a loop to see the “long-term benefit”

• Wait until your computer has more processors

– Seriously, overhead may dominate at 4 processors, but

parallel programming is likely to become much more important

• Beware memory-hierarchy issues

– Won’t focus on this, but often crucial for parallel performance

3811/1/2017

