CSE 332: Data Structures & Parallelism
Lecture 13: Beyond Comparison Sorting

Ruth Anderson
Autumn 2017
Today

• Sorting
 – Comparison sorting
 – Beyond comparison sorting
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
 ...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
 ...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge data sets

External sorting

10/30/2017
How fast can we sort?

- Heapsort & mergesort have \(O(n \log n) \) worst-case running time

- Quicksort has \(O(n \log n) \) average-case running times

- These bounds are all tight, actually \(\Theta(n \log n) \)

- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as \(O(n) \) or \(O(n \log \log n) \)
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison
A Different View of Sorting

• Assume we have n elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many permutations (possible orderings) of the elements?

• Example, $n=3$,

10/30/2017
A Different View of Sorting

• Assume we have \(n \) elements to sort
 – And for simplicity, none are equal (no duplicates)

• How many \textit{permutations} (possible orderings) of the elements?

• Example, \(n=3 \), six possibilities

 \[
 \begin{align*}
 \end{align*}
 \]

• In general, \(n \) choices for least element, then \(n-1 \) for next, then \(n-2 \) for next, …
 – \(n(n-1)(n-2)\ldots(2)(1) = n! \) possible orderings
Describing every comparison sort

- A different way of thinking of sorting is that the sorting algorithm has to “find” the right answer among the n! possible answers
 - Starts “knowing nothing”, “anything is possible”
 - Gains information with each comparison, eliminating some possibilities
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
 - In the end narrows down to a single possibility
Counting Comparisons

- Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison “is $a < b$?”
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first $k-1$ results

- What is the first comparison in:
 - Selection Sort?
 - Insertion Sort?
 - Quicksort?
 - Mergesort?
Counting Comparisons

• Don’t know what the algorithm is, but it cannot make progress without doing comparisons
 – Eventually does a first comparison “is \(a < b \)?”
 – Can use the result to decide what second comparison to do
 – Etc.: comparison \(k \) can be chosen based on first \(k-1 \) results

• Can represent this process as a decision tree
 – Nodes contain “set of remaining possibilities”
 – At root, anything is possible; no option eliminated
 – Edges are “answers from a comparison”
 – The algorithm does not actually build the tree; it’s what our proof uses to represent “the most the algorithm could know so far” as the algorithm progresses
One Decision Tree for n=3

- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree
Example if $a < c < b$

- Possible orders:
 - $a < b < c$, $b < c < a$
 - $a < c < b$, $c < a < b$
 - $b < a < c$, $c < b < a$

- Actual order:
 - $a < b < c$
 - $a < c < b$
 - $b < c < a$
 - $b < a < c$
What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - Perform only comparisons between 2 elements; binary result
 - Ex: Is a<b? Yes or no?
 - We assume no duplicate elements
 - Assume algorithm doesn’t ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all $n!$ answers
 - Each answer is a different leaf
 - So the tree must be big enough to have $n!$ leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with $n!$ leaves
 - So no algorithm can have worst-case running time better than the height of a tree with $n!$ leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm’s decision tree
Where are we

Proven: No comparison sort can have worst-case running time better than: the height of a binary tree with $n!$ leaves
 – Turns out average-case is same asymptotically
 – A comparison sort could be worse than this height, but it cannot be better
 – Fine, how tall is a binary tree with $n!$ leaves?

Now: Show that a binary tree with $n!$ leaves has height $\Omega(n \log n)$
 – That is, $n \log n$ is the lower bound, the height must be at least this, could be more, (in other words your comparison sorting algorithm could take longer than this, but it won’t be faster)
 – Factorial function grows very quickly

Then we’ll conclude that: (Comparison) Sorting is $\Omega(n \log n)$
 – This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time!
Lower bound on Height

- A binary tree of height h has at most how many leaves?
 $$L \leq 2^h$$

- A binary tree with L leaves has height at least:
 $$h \geq \log_2 L$$

- The decision tree has how many leaves: $N!$

- So the decision tree has height:
 $$h \geq \log_2 (N!) \approx \Omega(n \log n)$$
Lower bound on Height

• A binary tree of height h has \textbf{at most} how many leaves?
 \[L \leq 2^h \]

• A binary tree with L leaves has height \textbf{at least}:
 \[h \geq \log_2 L \]

• The decision tree has how many leaves: \textbf{N}!
• So the decision tree has height:
 \[h \geq \log_2 N! \]
Lower bound on height

- The height of a binary tree with \(L \) leaves is at least \(\log_2 L \).
- So the height of our decision tree, \(h \):

 \[
 h \geq \log_2(n!)
 \]

 \[
 = \log_2(n^*(n-1)^*(n-2)...(2)(1))
 \]

 \[
 = \log_2 n + \log_2(n-1) + \ldots + \log_2 1
 \]

 property of binary trees

 definition of factorial

 property of logarithms

 \[
 \geq \log_2 n + \log_2(n-1) + \ldots + \log_2(n/2)
 \]

 keep first \(n/2 \) terms

 \[
 \geq (n/2) \log_2(n/2)
 \]

 each of the \(n/2 \) terms left is \(\geq \log_2(n/2) \)

 \[
 = (n/2)(\log_2 n - \log_2 2)
 \]

 property of logarithms

 \[
 = (1/2)n \log_2 n - (1/2)n
 \]

 arithmetic

 \[
 \approx \Omega(n \log n)
 \]
The Big Picture

Simple algorithms: $O(n^2)$
- Insertion sort
- Selection sort
- Shell sort
...

Fancier algorithms: $O(n \log n)$
- Heap sort
- Merge sort
- Quick sort (avg)
...

Comparison lower bound: $\Omega(n \log n)$

Specialized algorithms: $O(n)$
- Bucket sort
- Radix sort

Handling huge datasets
- External sorting

How???
- Change the model – assume more than ‘compare(a,b)’

10/30/2017
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and \(K \) (or any small range),
 - Create an array of size \(K \), and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a *count* of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Example:

- \(K = 5 \)
- Input: \((5,1,3,4,3,2,1,1,5,4,5) \)
- Output: \(1, 1, 1, 2, 3, 3, 4, 5, 5, 5 \)

\[O(N) + O(K + N) \]

1st pass: \(O(N) \)
2nd pass: \(O(K + N) \)

10/30/2017
BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range),
 - Create an array of size K, and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how many times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count</th>
<th>array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

- Example:
 - K=5
 - Input (5,1,3,4,3,2,1,1,5,4,5)
 - Output: 1,1,1,2,3,3,4,4,5,5,5

What is the running time?
Analyzing bucket sort

- Overall: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

- Good when range, K, is smaller (or not much larger) than n
 - (We don’t spend time doing lots of comparisons of duplicates!)

- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass

- For data in addition to integer keys, use list at each bucket
Bucket Sort with Data

- Most real lists aren't just #s; we have data
- Each bucket is a list (say, linked list)
- To add to a bucket, place at end O(1) (keep pointer to last element)

<table>
<thead>
<tr>
<th>count array</th>
<th>Rocky V</th>
<th>Harry Potter</th>
<th>Casablanca</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Rocky V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Harry Potter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Casablanca</td>
<td>Star Wars</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Example: Movie ratings: 1=bad, ..., 5=excellent
- Input:
 - 5: Casablanca
 - 3: Harry Potter movies
 - 1: Rocky V
 - 5: Star Wars

Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star Wars
This result is stable; Casablanca still before Star Wars
Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit, sort with Bucket Sort
 - Keeping sort stable
 - Do one pass per digit
- **Invariant**: After \(k \) passes, the last \(k \) digits are sorted

Aside: Origins go back to the 1890 U.S. census
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>67</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

Input: \[\underline{478}\]

537
9
721
3
38
143
67

First pass:
1. bucket sort by ones digit
2. Iterate thru and collect into a list
 - List is sorted by first digit

Order now: 721

3
143
537
67
478
38
9

10/30/2017
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td>537</td>
<td>478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>9</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td></td>
<td>67</td>
<td>478</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>143</td>
<td>537</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>67</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>38</td>
<td></td>
<td>478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 721

Second pass:

stable bucket sort by tens digit

If we chop off the 100's place,
these #s are sorted

Order now: 3

9

10/30/2017
Example

Radix = 10

Order was: 3 9 721 537 38 143 67 478

Order now: 3 9 38 67 143 478 537 721

Third pass:

stable bucket sort by 100s digit

Only 3 digits: We’re done!

10/30/2017
Student Activity

RadixSort

- Input: 126, 328_A, 636, 341, 416, 131, 328_B

BucketSort on lsd:

<table>
<thead>
<tr>
<th>341</th>
<th>131</th>
<th>126</th>
<th>636</th>
<th>416</th>
<th>328<sub>A</sub></th>
<th>328<sub>B</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BucketSort on next-higher digit:

<table>
<thead>
<tr>
<th>416</th>
<th>126</th>
<th>328<sub>A</sub></th>
<th>131</th>
<th>636</th>
<th>341</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BucketSort on msd:

<table>
<thead>
<tr>
<th>126</th>
<th>131</th>
<th>328<sub>A</sub></th>
<th>328<sub>B</sub></th>
<th>416</th>
<th>636</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: P
 - e.g. Ages of people: 3; Phone #: 10; Person’s name:

- Work per pass is 1 bucket sort: $O(N + B)$
 - Each pass is a Bucket Sort
- Total work is $O(P \times (N + B))$
 - We do ‘P’ passes, each of which is a Bucket Sort
Analysis of Radix Sort

Performance depends on:

- Input size: n
- Number of buckets = Radix: B
 - e.g. Base 10 #: 10; binary #: 2; Alpha-numeric char: 62
- Number of passes = “Digits”: P
 - e.g. Ages of people: 3; Phone #: 10; Person’s name: ?

- Work per pass is 1 bucket sort: $O(B+n)$
 - Each pass is a Bucket Sort
- Total work is $O(P(B+n))$
 - We do ‘P’ passes, each of which is a Bucket Sort
Comparison to Comparison Sorts

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - Approximate run-time: $15^* (52 + n)$
 - This is less than $n \log n$ only if $n > 33,000$
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties
- Not really practical for many classes of keys
 - Strings: Lots of buckets
Recap: Features of Sorting Algorithms

In-place
- Sorted items occupy the same space as the original items.
 (No copying required, only $O(1)$ extra space if any.)

Stable
- Items in input with the same value end up in the same order as when they began.

Examples:
- Merge Sort - not in place, stable
- Quick Sort - in place, not stable

if pivot = 5

quick sort would swap these two values

2, 3, 5, 6a, 6b, 6c, 7 ← Sorted (stable)
Sorting massive data: External Sorting

Need sorting algorithms that **minimize disk/tape access time**:
- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:
- Load chunk of data into Memory, sort, store this “run” on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)

- Mergesort can leverage multiple disks
- Weiss gives some examples
Sorting Summary

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- $O(n \log n)$ sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- $\Omega(n \log n)$ is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!