CSE 332: Data Structures & Parallelism

Lecture 11: More Hashing

Ruth Anderson
Autumn 2017
Today

- Dictionaries
 - Hashing
Hash Tables: Review

- Aim for constant-time (i.e., $O(1)$) find, insert, and delete
 - “On average” under some reasonable assumptions

- A hash table is an array of some fixed size
 - But growable as we’ll see

10/23/2017
Hashing Choices

1. Choose a Hash function
2. Choose Table Size
3. Choose a Collision Resolution Strategy from these:
 - Separate Chaining
 - Open Addressing
 - Linear Probing
 - Quadratic Probing
 - Double Hashing

- Other issues to consider:
 - Deletion?
 - What to do when the hash table gets “too full”?
Open Addressing: Linear Probing

- Why not use up the empty space in the table?
- Store directly in the array cell (no linked list)
- How to deal with collisions?
- If \(h(key) \) is already full,
 - try \((h(key) + 1) \mod TableSize \). If full,
 - try \((h(key) + 2) \mod TableSize \). If full,
 - try \((h(key) + 3) \mod TableSize \). If full...

- Example: insert 38, 19, 8, 109, 10

\[
\begin{array}{c|c|c}
0 & 8_2 & 109_1, 10_0 \\
1 & 109_2 & 10_1 \\
2 & 10_2 & \\
3 & & \\
4 & & \\
5 & & \\
6 & & \\
7 & & \\
8 & 38 & 8_0 \\
9 & 19 & 8_1, 109_0 \\
\end{array}
\]

Find \((109)\)
Find \((129)\)
Open Addressing: Linear Probing

- Another simple idea: If \(h(key) \) is already full,
 - try \((h(key) + 1) \mod TableSize \). If full,
 - try \((h(key) + 2) \mod TableSize \). If full,
 - try \((h(key) + 3) \mod TableSize \). If full...

- Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

- Another simple idea: if \(h(\text{key}) \) is already full,
 - try \((h(\text{key}) + 1) \mod \text{TableSize} \). If full,
 - try \((h(\text{key}) + 2) \mod \text{TableSize} \). If full,
 - try \((h(\text{key}) + 3) \mod \text{TableSize} \). If full...

- Example: insert 38, 19, 8, 109, 10
Open Addressing: Linear Probing

- Another simple idea: If $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Open Addressing: Linear Probing

- Another simple idea: if $h(key)$ is already full,
 - try $(h(key) + 1) \% \text{TableSize}$. If full,
 - try $(h(key) + 2) \% \text{TableSize}$. If full,
 - try $(h(key) + 3) \% \text{TableSize}$. If full...

- Example: insert 38, 19, 8, 109, 10
Open addressing

Linear probing is one example of open addressing

In general, open addressing means resolving collisions by trying a sequence of other positions in the table.

Trying the next spot is called probing

- We just did linear probing:
 - i^{th} probe: $(h(key) + i) \mod TableSize$

- In general have some probe function f and:
 - i^{th} probe: $(h(key) + f(i)) \mod TableSize$

Open addressing does poorly with high load factor λ

- So want larger tables
- Too many probes means no more $O(1)$
Terminology

We and the book use the terms
- “chaining” or “separate chaining”
- “open addressing”

Very confusingly,
- “open hashing” is a synonym for “chaining”
- “closed hashing” is a synonym for “open addressing”
Open Addressing: Linear Probing

What about \texttt{find}? If value is in table? If not there? Worst case?

What about \texttt{delete}?

How does open addressing with linear probing compare to separate chaining?
Open Addressing: Other Operations

insert finds an open table position using a probe function

What about find?
- Must use same probe function to “retrace the trail” for the data
- Unsuccessful search when reach empty position

What about delete?
- Must use “lazy” deletion. Why?
 - Marker indicates “no data here, but don’t stop probing”

 \[
 \begin{array}{ccccccc}
 10 & \times & / & 23 & / & / & 16 & \times & 26 \\
 \end{array}
 \]

- Note: delete with chaining is plain-old list-remove
Primary Clustering

It turns out linear probing is a bad idea, even though the probe function is quick to compute (a good thing)

- Tends to produce clusters, which lead to long probe sequences
- Called primary clustering
- Saw the start of a cluster in our linear probing example

[R. Sedgewick]
Analysis of Linear Probing

- **Trivial fact:** For any $\lambda < 1$, linear probing will find an empty slot
 - It is “safe” in this sense: no infinite loop unless table is full

- **Non-trivial facts** we won’t prove:
 Average # of probes given λ (in the limit as TableSize $\to \infty$)
 - Unsuccessful search:
 \[\frac{1}{2} \left(1 + \frac{1}{(1 - \lambda)^2} \right) \]
 - Successful search:
 \[\frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \]

- This is pretty bad: need to leave sufficient empty space in the table to get decent performance (see chart)
Analysis in chart form

- Linear-probing performance degrades rapidly as table gets full
 - (Formula assumes “large table” but point remains)

- By comparison, separate chaining performance is linear in λ and has no trouble with $\lambda > 1$
Open Addressing: Linear probing

\[(h(\text{key}) + f(i)) \mod \text{TableSize}\]

- For linear probing:
 \[f(i) = i\]

- So probe sequence is:
 - 0th probe: \(h(\text{key}) \mod \text{TableSize}\)
 - 1st probe: \((h(\text{key}) + 1) \mod \text{TableSize}\)
 - 2nd probe: \((h(\text{key}) + 2) \mod \text{TableSize}\)
 - 3rd probe: \((h(\text{key}) + 3) \mod \text{TableSize}\)
 - ...
 - \(i\)th probe: \((h(\text{key}) + i) \mod \text{TableSize}\)
Open Addressing: Quadratic probing

- We can avoid primary clustering by changing the probe function...

 \[(h(key) + f(i)) \mod \text{TableSize}\]

- For quadratic probing:

 \[f(i) = i^2\]

- So probe sequence is:

 - \(0^{th}\) probe: \(h(key) \mod \text{TableSize}\)
 - \(1^{st}\) probe: \((h(key) + 1) \mod \text{TableSize}\)
 - \(2^{nd}\) probe: \((h(key) + 4) \mod \text{TableSize}\)
 - \(3^{rd}\) probe: \((h(key) + 9) \mod \text{TableSize}\)
 - ...
 - \(i^{th}\) probe: \((h(key) + i^2) \mod \text{TableSize}\)

- Intuition: Probes quickly “leave the neighborhood”
Quadratic Probing Example

TableSize = 10
Insert:
89
18
49
58
79

ith probe: (h(key) + i^2) \mod TableSize
Quadratic Probing Example

TableSize = 10
insert(89)
Quadratic Probing Example

Table Size = 10

insert(89)

insert(18)
Quadratic Probing Example

TableSize = 10

- insert(89)
- insert(18)
- insert(49)
Quadratic Probing Example

Table Size = 10

- insert(89)
- insert(18)
- insert(49)

 \[49 \mod 10 = 9\text{ collision!}\]

 \[(49 + 1) \mod 10 = 0\]

- insert(58)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>
Quadratic Probing Example

Table Size = 10

<table>
<thead>
<tr>
<th>0</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>89</td>
</tr>
</tbody>
</table>

- **insert(89)**
- **insert(18)**
- **insert(49)**
- **insert(58)**

 \[58 \mod 10 = 8 \text{ collision!} \]

 \[(58 + 1) \mod 10 = 9 \text{ collision!} \]

 \[(58 + 4) \mod 10 = 2 \]

- **insert(79)**
Quadratic Probing Example

Table Size = 10

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>89</td>
</tr>
</tbody>
</table>

- **Insertions:**
 - insert(89)
 - insert(18)
 - insert(49)
 - insert(58)
 - insert(79)

 - \(79 \mod 10 = 9 \) collision!
 - \((79 + 4) \mod 10 = 3\)
ith probe: \((h(key) + i^2) \mod TableSize\)

Another Quadratic Probing Example

Table Size = 7

<table>
<thead>
<tr>
<th>0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Insert:
- 76 \((76 \mod 7 = 6)\)
- 40 \((40 \mod 7 = 5)\)
- 48 \((48 \mod 7 = 6)\)
- 5 \((5 \mod 7 = 5)\)
- 55 \((55 \mod 7 = 6)\)
- 47 \((47 \mod 7 = 5)\)
ith probe: \((h(key) + i^2) \mod TableSize \)

Another Quadratic Probing Example

Table Size = 7

Insert:

1. 76 \((76 \mod 7 = 6) \)
2. 40 \((40 \mod 7 = 5) \)
3. 48 \((48 \mod 7 = 6) \)
4. 5 \((5 \mod 7 = 5) \)
5. 55 \((55 \mod 7 = 6) \)
6. 47 \((47 \mod 7 = 5) \)

10/23/2017
ith probe: \((h(key) + i^2) \mod \text{TableSize}\)

Another Quadratic Probing Example

\[
\begin{array}{c|c|c}
\text{TableSize} &= 7 \\
\hline
\text{Insert:} \\
0 & \text{ } & \text{ } \\
1 & 76 & (76 \mod 7 = 6) \\
2 & 40 & (40 \mod 7 = 5) \\
3 & 48 & (48 \mod 7 = 6) \\
4 & 5 & (5 \mod 7 = 5) \\
5 & 40 & \\
6 & 76 & 47 & (47 \mod 7 = 5)
\end{array}
\]
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\text{ith probe: } (h(key) + i^2) \mod \text{TableSize} \]
Another Quadratic Probing Example

TableSize = 7

<table>
<thead>
<tr>
<th>Insert:</th>
<th>(key)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 48</td>
<td></td>
</tr>
<tr>
<td>1 76</td>
<td>(76 % 7 = 6)</td>
</tr>
<tr>
<td>2 40</td>
<td>(40 % 7 = 5)</td>
</tr>
<tr>
<td>3 48</td>
<td>(48 % 7 = 6)</td>
</tr>
<tr>
<td>4 5</td>
<td>(5 % 7 = 5)</td>
</tr>
<tr>
<td>5 40</td>
<td>(55 % 7 = 6)</td>
</tr>
<tr>
<td>6 76</td>
<td>(47 % 7 = 5)</td>
</tr>
</tbody>
</table>
Another Quadratic Probing Example

TableSize = 7

Insert:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

- 76 \((76 \mod 7 = 6) \)
- 40 \((40 \mod 7 = 5) \)
- 48 \((48 \mod 7 = 6) \)
- 5 \((5 \mod 7 = 5) \)
- 55 \((55 \mod 7 = 6) \)
- 47 \((47 \mod 7 = 5) \)
\textbf{Another Quadratic Probing Example}

TableSize = 7

Insert:

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

$76 \pmod{7} = 6$

$40 \pmod{7} = 5$

$48 \pmod{7} = 6$

$5 \pmod{7} = 5$

$55 \pmod{7} = 6$

$(47 + 1) \pmod{7} = 6 \text{ collision!}$

$(47 + 4) \pmod{7} = 2 \text{ collision!}$

$(47 + 9) \pmod{7} = 0 \text{ collision!}$

$(47 + 16) \pmod{7} = 0 \text{ collision!}$

$(47 + 25) \pmod{7} = 2 \text{ collision!}$

Will we ever get a 1 or 4?!?
Another Quadratic Probing Example

insert(47) will always fail here. Why?

<table>
<thead>
<tr>
<th>0</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>76</td>
</tr>
</tbody>
</table>

For all i, $(5 + i^2) \mod 7$ is 0, 2, 5, or 6

Proof uses induction and

$$(5 + i^2) \mod 7 = (5 + (i - 7)^2) \mod 7$$

In fact, for all c and k,

$$(c + i^2) \mod k = (c + (i - k)^2) \mod k$$
From bad news to good news

Bad News:
- After TableSize quadratic probes, we cycle through the same indices

Good News:
- If TableSize is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in at most TableSize/2 probes
- So: If you keep $\lambda < \frac{1}{2}$ and TableSize is prime, no need to detect cycles

- Proof posted in lecture11.txt (slightly less detailed proof in textbook)
 - For prime T and $0 \leq i, j \leq T/2$ where $i \neq j$,
 $$(h(key) + i^2) \mod T \neq (h(key) + j^2) \mod T$$
 That is, if T is prime, the first $T/2$ quadratic probes map to different locations
Quadratic Probing:
Success guarantee for \(\lambda < \frac{1}{2} \)

- If size is prime and \(\lambda < \frac{1}{2} \), then quadratic probing will find an empty slot in size/2 probes or fewer.
 - show for all \(0 \leq i, j \leq \text{size}/2 \) and \(i \neq j \)
 \[
 (h(x) + i^2) \mod \text{size} \neq (h(x) + j^2) \mod \text{size}
 \]
 - by contradiction: suppose that for some \(i \neq j \):
 \[
 (h(x) + i^2) \mod \text{size} = (h(x) + j^2) \mod \text{size}
 \Rightarrow i^2 \mod \text{size} = j^2 \mod \text{size}
 \Rightarrow (i^2 - j^2) \mod \text{size} = 0
 \Rightarrow [(i + j)(i - j)] \mod \text{size} = 0
 \]
 BUT size does not divide \((i-j)\) or \((i+j)\)

How can \(i+j = 0 \) or \(i+j = \text{size} \) when:
- \(i \neq j \)
- \(0 \leq i, j \leq \text{size}/2 \)?

Similarly how can \(i-j = 0 \) or \(i-j = \text{size} \)?
Clustering reconsidered

- Quadratic probing does not suffer from primary clustering:
 As we resolve collisions we are not merely growing “big blobs” by adding one more item to the end of a cluster, we are looking i^2 locations away, for the next possible spot.

- But quadratic probing does not help resolve collisions between keys that initially hash to the same index
 - Any 2 keys that initially hash to the same index will have the same series of moves after that looking for any empty spot
 - Called secondary clustering

- Can avoid secondary clustering with a probe function that depends on the key. double hashing...
Open Addressing: Double hashing

Idea: Given two good hash functions h and g, it is very unlikely that for some key, $h(\text{key}) = g(\text{key})$.

- $(h(\text{key}) + f(i)) \mod \text{TableSize}$
- For double hashing:
 $$ f(i) = i \times g(\text{key}) $$
- So probe sequence is:
 - 0^{th} probe: $h(\text{key}) \mod \text{TableSize}$
 - 1^{st} probe: $(h(\text{key}) + g(\text{key})) \mod \text{TableSize}$
 - 2^{nd} probe: $(h(\text{key}) + 2 \times g(\text{key})) \mod \text{TableSize}$
 - 3^{rd} probe: $(h(\text{key}) + 3 \times g(\text{key})) \mod \text{TableSize}$
 - ...
 - i^{th} probe: $(h(\text{key}) + i \times g(\text{key})) \mod \text{TableSize}$

- Detail: Make sure $g(\text{key})$ can't be 0

10/23/2017
Open Addressing: Double Hashing

\(h(key) + i \cdot g(key) \mod \text{TableSize} \)

<table>
<thead>
<tr>
<th>Table Size</th>
<th>T = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Functions:</td>
<td></td>
</tr>
<tr>
<td>(h(key) = \text{key} \mod T)</td>
<td></td>
</tr>
<tr>
<td>(g(key) = 1 + ((\text{key}/T) \mod (T-1)))</td>
<td></td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33 \(g(33) = 1 + \frac{33}{10} \mod 9 \)
- 147 \(= 1 + 3 \mod 9 \)
- 43 \(= 1 + 3 = 4 \)

\(g(147) = 1 + \frac{147}{10} \mod 9 \)
\(= 1 + 14 \mod 9 \)
\(= 1 + 5 = 6 \)
Double Hashing

\[\text{ith probe: } (h(key) + i \times g(key)) \mod \text{TableSize} \]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T = 10 (TableSize)

Hash Functions:

\[h(key) = key \mod T \]
\[g(key) = 1 + ((key/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

13
28
33
147
43
Double Hashing

\[
\text{ith probe: } (h(key) + i \times g(key)) \mod \text{TableSize}
\]

<table>
<thead>
<tr>
<th>T = 10 (TableSize)</th>
</tr>
</thead>
</table>

Hash Functions:

\[
h(key) = \text{key mod } T
\]

\[
g(key) = 1 + ((\text{key}/T) \mod (T-1))
\]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147
- 43
Double Hashing

\[\text{ith probe: } (h(key) + i \cdot g(key)) \mod \text{TableSize} \]

\[T = 10 \text{ (TableSize)} \]

Hash Functions:

\[h(key) = \text{key mod } T \]
\[g(key) = 1 + ((\text{key}/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

\[13 \]
\[28 \]
\[33 \rightarrow g(33) = 1 + 3 \mod 9 = 4 \]
\[147 \]
\[43 \]
Double Hashing

\[\text{ith probe: } (h(key) + i \times g(key)) \mod \text{TableSize} \]

\[T = 10 \text{ (TableSize)} \]

Hash Functions:

\[h(key) = key \mod T \]

\[g(key) = 1 + ((key/T) \mod (T-1)) \]

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 147 \[\Rightarrow g(147) = 1 + 14 \mod 9 = 6 \]
- 43
Double Hashing

\[\text{ith probe: } (h(key) + i \times g(key)) \mod \text{TableSize} \]

<table>
<thead>
<tr>
<th>T = 10 (TableSize)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Functions:</td>
</tr>
<tr>
<td>[h(key) = \text{key mod T}]</td>
</tr>
<tr>
<td>[g(key) = 1 + ((\text{key/T}) \mod (T-1))]</td>
</tr>
</tbody>
</table>

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

- 13
- 28
- 33
- 28
- 147 \[g(147) = 1 + 14 \mod 9 = 6 \]
- 43 \[g(43) = 1 + 4 \mod 9 = 5 \]

We have a problem:

\[3 + 0 = 3 \]
\[3 + 5 = 8 \]
\[3 + 10 = 13 \]
\[3 + 15 = 18 \]
\[3 + 20 = 23 \]
Double-hashing analysis

- **Intuition**: Since each probe is “jumping” by $g(key)$ each time, we “leave the neighborhood” and “go different places from other initial collisions”

But, as in quadratic probing, we could still have a problem where we are not “safe” due to an infinite loop despite room in table
 - It is known that this cannot happen in at least one case:
 - For primes p and q such that $2 < q < p$
 - $h(key) = key \% p$
 - $g(key) = q - (key \% q)$
More double-hashing facts

- Assume “uniform hashing”
 - Means probability of $g(key1) \mod p == g(key2) \mod p$ is $1/p$

- Non-trivial facts we won’t prove:
 Average # of probes given λ (in the limit as TableSize $\to \infty$)
 - Unsuccessful search (intuitive):
 \[
 \frac{1}{1-\lambda}
 \]
 - Successful search (less intuitive):
 \[
 \frac{1}{\lambda \log_e \left(\frac{1}{1-\lambda} \right)}
 \]

- Bottom line: unsuccessful bad (but not as bad as linear probing),
 but successful is not nearly as bad
Where are we?

- **Separate Chaining** is easy
 - find, delete proportional to load factor on average
 - insert can be constant (just push on front of list)
- **Open addressing** uses probing, has clustering issues as table fills

Why use it:
 - Less memory allocation?
 - Some run-time overhead for allocating linked list (or whatever) nodes; open addressing could be faster
 - Easier data representation?

- **Now:**
 - Growing the table when it gets too full (aka “rehashing”)
 - Relation between hashing/comparing and connection to Java
Rehashing

- As with array-based stacks/queues/lists, if table gets too full, create a bigger table and copy everything over

- With **separate chaining**, we get to decide what “too full” means
 - Keep load factor reasonable (e.g., < 1)?
 - Consider average or max size of non-empty chains?

- For **open addressing**, half-full is a good rule of thumb

- New table size
 - Twice-as-big is a good idea, except, uhm, that won’t be prime!
 - So go *about* twice-as-big
 - Can have a list of prime numbers in your code since you probably won’t grow more than 20-30 times, and then calculate after that
More on rehashing

• What if we copy all data to the same indices in the new table?
 – Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table
 – Iterate over old table: $O(n)$
 – n inserts / calls to the hash function: $n \cdot O(1) = O(n)$

• Is there some way to avoid all those hash function calls?
 – Space/time tradeoff: Could store $h(key)$ with each data item
 – Growing the table is still $O(n)$; saving $h(key)$ only helps by a constant factor
Hashing and comparing

- Our use of int key can lead to us overlooking a critical detail:
 - We initially hash E to get a table index
 - While chaining or probing we need to determine if this is the E that I am looking for. Just need equality testing.

- So a hash table needs a hash function and a equality testing
 - In the Java library each object has an equals method and a hashCode method

```java
public class Object {
    // equals method
    public boolean equals(Object o) {
        // implementation...
    }

    // hashCode method
    public int hashCode() {
        // implementation...
    }
}
```
Equal objects must hash the same

- The Java library (and your project hash table) make a very important assumption that clients must satisfy...

- Object-oriented way of saying it:
  ```java
  if a.equals(b), then we must require
  a.hashCode() == b.hashCode()
  ```

- Function object way of saying it:
  ```java
  if c.compare(a, b) == 0, then we must require
  h.hash(a) == h.hash(b)
  ```

- If you ever override equals
 - You need to override hashCode also in a consistent way
 - See CoreJava book, Chapter 5 for other "gotchas" with equals
By the way: comparison has rules too

We have not emphasized important “rules” about comparison for:
 - All our dictionaries
 - Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all \(a, b, \) and \(c \),
 - If \(\text{compare}(a, b) < 0 \), then \(\text{compare}(b, a) > 0 \)
 - If \(\text{compare}(a, b) == 0 \), then \(\text{compare}(b, a) == 0 \)
 - If \(\text{compare}(a, b) < 0 \) and \(\text{compare}(b, c) < 0 \), then \(\text{compare}(a, c) < 0 \)
A Generally Good `hashCode()`

```java
int result = 17; // start at a prime

foreach field f
    int fieldHashCode =
        boolean: (f ? 1: 0)
        byte, char, short, int: (int) f
        long: (int) (f ^ (f >>> 32))
        float: Float.floatToIntBits(f)
        double: Double.doubleToLongBits(f), then above
        Object: object.hashCode()

    result = 31 * result + fieldHashCode;
return result;
```
Final word on hashing

- The hash table is one of the most important data structures
 - Efficient find, insert, and delete
 - Operations based on sorted order are not so efficient
 - Useful in many, many real-world applications
 - Popular topic for job interview questions
- Important to use a good hash function
 - Good distribution, Uses enough of key's values
 - Not overly expensive to calculate (bit shifts good!)
- Important to keep hash table at a good size
 - Prime #
 - Preferable λ depends on type of table
- What we skipped: Perfect hashing, universal hash functions, hopscotch hashing, cuckoo hashing
- Side-comment: hash functions have uses beyond hash tables
 - Examples: Cryptography, check-sums