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Today

• Finish up AVL Trees

• The Memory Hierarchy and you (briefly)

• Dictionaries

– B-Trees
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Now what?

• We have a data structure for the dictionary ADT (AVL tree) that 
has worst-case O(log n) behavior

– One of several interesting/fantastic balanced-tree 

approaches

• We are about to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large 

dictionaries (say, over 1GB = 230 bytes), need to understand 

some memory-hierarchy basics

– Don’t always assume “every memory access has an 

unimportant O(1) cost”

– Learn more in CSE351/333/471, focus here on relevance to 

data structures and efficiency

10/16/2017 3



10/16/2017

Why do we need to know about the 

memory hierarchy?

• One of the assumptions that Big-Oh makes is that all operations 

take the same amount of time.

• Is that really true?
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A typical hierarchy
“Every desktop/laptop/server is 

different” but here is a plausible 

configuration these days
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CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 instructions

get data in L2: 225/sec = 30 

instructions 

get data in main memory:

222/sec = 250 instructions 

get data from “new 

place” on disk:

27/sec =8,000,000

instructions



Morals

It is much faster to do: Than:

5 million arithmetic ops 1 disk access

2500 L2 cache accesses 1 disk access

400 main memory accesses 1 disk access

Why are computers built this way?

– Physical realities (speed of light, closeness to CPU)

– Cost (price per byte of different technologies)

– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the 

slowness and unlikely to spin faster in the future

– Speedup at higher levels (e.g. a faster processor) makes 

lower levels relatively slower

– Later in the course: more than 1 CPU!
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“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main 

memory for you

– Replacing items already there

– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to 

open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing 

algorithms / data structures with knowledge of memory hierarchy

– And when you do, you often need to know one more thing…
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How does data move up the hierarchy?

• Moving data up the memory hierarchy is slow because of latency

(think distance-to-travel)

– Since we’re making the trip anyway, may as well carpool

• Get a block of data in the same time it would take to get a byte

– Sends nearby memory because:

• It’s easy

• And likely to be asked for soon (think fields/arrays)

• Side note: Once a value is in cache, may as well keep it around for 

awhile; accessed once, a particular value is more likely to be 

accessed again in the near future (more likely than some random 

other value) 
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Spatial Locality
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Locality

Temporal Locality (locality in time) – If an address is 
referenced, it will tend to be referenced again soon.

Spatial Locality (locality in space) – If an address is 
referenced, addresses that are close by will tend to 
be referenced soon.
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Arrays vs. Linked lists

• Which has the potential to best take advantage of spatial 

locality?
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Block/line size

• The amount of data moved from disk into memory is called the 

“block” size or the “page” size

– Not under program control

• The amount of data moved from memory into cache is called the 

cache “line” size

– Not under program control
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Connection to data structures

• An array benefits more than a linked list from block moves

– Language (e.g., Java) implementation can put the list nodes 

anywhere, whereas array is typically contiguous memory

• Suppose you have a queue to process with 223 items of 27 bytes 

each on disk and the block size is 210 bytes

– An array implementation needs 220 disk accesses

• If “perfectly streamed”, > 4 seconds

• If “random places on disk”, 8000 seconds (> 2 hours)

– A list implementation in the worst case needs 223 “random” 

disk accesses (>  16 hours) – probably not that bad

• Note: “array” doesn’t necessarily mean “good”

– Binary heaps “make big jumps” to percolate (different block)
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BSTs?

• Looking things up in balanced binary search trees is O(log n), so 

even for n = 239 (512GB) we need not worry about minutes or 

hours

• Still, number of disk accesses matters:

– Pretend for a minute we had an AVL tree of height 55

– The total number of nodes could be?_________

– Most of the nodes will be on disk: the tree is shallow, but it is 

still many gigabytes big so the entire tree cannot fit in memory

• Even if memory holds the first 25 nodes on our path, we 

still potentially need 30 disk accesses if we are traversing 

the entire height of the tree.
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Note about numbers; moral

• Note: All the numbers in this lecture are “ballpark” “back of the 

envelope” figures

• Moral: Even if they are off by, say, a factor of 5, the moral is the 

same: 

If your data structure is mostly on disk, 

you want to minimize disk accesses

• A better data structure in this setting would exploit the block size 

and relatively fast memory access to avoid disk accesses…
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Trees as Dictionaries

(N= 10 million) [Example from Weiss]

In worst case, each node access is a disk access, 

number of accesses:

# Disk accesses

• BST

• AVL

• B Tree
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Our goal

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even 

shallower than AVL trees so that we can minimize disk 

accesses and exploit disk-block size

• A key idea: Increase the branching factor of our tree
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M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

What is the height of this tree?

What is the worst case running time of find?

• Build some sort of search tree with branching factor M:

– Have an array of sorted children (Node[])

– Choose M to fit snugly into a disk block (1 access for array)
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M-ary Search Tree

• # hops for find?

– If we have a balanced M-ary tree:

– Approx. logM n hops instead of log2 n (for balanced BST)

– Example: M = 256 (=28) and n = 240 that’s 5 hops instead of 40 hops

• Sounds good, but how do we decide which branch to take?

– Binary tree: Less than/greater than node value?

– M-ary: In range 1? In range 2? In range 3?... In range M?

• Runtime of find if balanced: O(log2 M logM n)

– logM n is the height we traverse. 

– log2M: At each step, find the correct child branch to take using binary 

search among the M options!
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Questions about M-ary search trees

• What should the order property be?

• How would you rebalance (ideally without more disk accesses)?

• Storing real data at inner-nodes (like we do in a BST) seems kind of 

wasteful…

– To access the node, will have to load the data from disk, 

even though most of the time we won’t use it!!

– Usually we are just “passing through” a node on the way to the 

value we are actually looking for.

So let’s use the branching-factor idea, but for a different kind of 

balanced tree:

– Not a binary search tree

– But still logarithmic height for any M > 2
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B+ Trees (we and the book say “B Trees”)

• Two types of nodes: internal nodes 

& leaves

• Each internal node has room for up 

to M-1 keys and M children

– No other data; all data at the 

leaves!

• Order property:

Subtree between keys a and b

contains only data that is  a

and < b (notice the )

• Leaf nodes have up to L sorted data 

items

• As usual, we’ll ignore the “along for 

the ride” data in our examples

– Remember no data at non-leaves
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3 7 12 21

21x12x<217x<123x<7x<3

Remember:

•Leaves store data

•Internal nodes are 

‘signposts’



Find

• Different from BST in that we don’t store data at internal nodes

• But find is still an easy root-to-leaf recursive algorithm

– At each internal node do binary search on (up to) M-1 keys to 

find the branch to take

– At the leaf do binary search on the (up to) L data items

• But to get logarithmic running time, we need a balance condition…

10/16/2017 21

3 7 12 21
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Structure Properties

• Root (special case)

– If tree has  L items, root is a leaf (occurs when starting up, 

otherwise unusual)

– Else has between 2 and M children

• Internal nodes

– Have between M/2 and M children, i.e., at least half full

• Leaf nodes

– All leaves at the same depth

– Have between L/2 and L data items, i.e., at least half full

Any M > 2 and L will work, but:

We pick M and L based on disk-block size
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Example
Suppose M=4 (max # pointers in internal node)

and L=5 (max # data items at leaf)

– All internal nodes have at least 2 children

– All leaves have at least 3 data items (only showing keys)

– All leaves at same depth
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Note on notation: Inner nodes drawn horizontally, 

leaves vertically to distinguish.  Include empty cells



Balanced enough

Not hard to show height h is logarithmic in number of data items n

• Let M > 2 (if M = 2, then a list tree is legal – no good!)

• Because all nodes are at least half full (except root may have 

only 2 children) and all leaves are at the same level, the 

minimum number of data items n for a height h>0 tree is…

n  2 M/2 h-1 L/2
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minimum number

of leaves

minimum data 

per leaf



Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with M=128 and L=64?
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Example: B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

– Recall S(h) = 1 + S(h-1) + S(h-2)

– lecture8.xlsx reports: 37

• Maximum height of B tree with M=128 and L=64?

– Recall (2 M/2 h-1) L/2

– lecture9.xlsx reports: 5 (and 4 is more likely)

– Also not difficult to compute via algebra
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Disk Friendliness

What makes B trees so disk friendly?

• Many keys stored in one internal node

– All brought into memory in one disk access

• IF we pick M wisely

– Makes the binary search over M-1 keys totally worth it 

(insignificant compared to disk access times)

• Internal nodes contain only keys

– Any find wants only one data item; wasteful to load 

unnecessary items with internal nodes

– So only bring one leaf of data items into memory

– Data-item size doesn’t affect what M is
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Maintaining balance

• So this seems like a great data structure (and it is)

• But we haven’t implemented the other dictionary operations yet

– insert

– delete

• As with AVL trees, the hard part is maintaining structure properties

– Example: for insert, there might not be room at the correct 

leaf
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Building a B-Tree (insertions)
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The empty B-

Tree (the root

will be a leaf at 

the beginning)

M = 3 L = 3

Insert(3) Insert(18) Insert(14)
3 3

18

3

14

18

Just need to keep data 

in order



Insert(30)
3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30
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18

•When we ‘overflow’ a leaf, we split it into 2 leaves

•Parent gains another child

•If there is no parent (like here), we create one; how do we pick the key 

shown in it?

•Smallest element in right tree

???



Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18

Insert(15)

M = 3 L = 3

32

32

36

32

32

36

32

15
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Split leaf again



Insert(16)

3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

16

3

14

15

16

15

15 32

18
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Split the internal node 

(in this case, the root)

What 

now?



Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3
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Note: Given the leaves and the structure of the tree, we 

can always fill in internal node keys;

‘the smallest value in my right branch’



Insertion Algorithm

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

– Split the leaf into two nodes:

• Original leaf with (L+1)/2 smaller items

• New leaf with (L+1)/2 = L/2 larger items

– Attach the new child to the parent

• Adding new key to parent in sorted order

3. If step (2) caused the parent to have M+1 children, overflow!

– …
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Insertion algorithm continued

3. If an internal node has M+1 children

– Split the node into two nodes

• Original node with (M+1)/2 smaller items

• New node with (M+1)/2 = M/2 larger items

– Attach the new child to the parent

• Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

– So repeat step 3 up the tree until a node doesn’t overflow

– If the root overflows, make a new root with two children

• This is the only case that increases the tree height
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Efficiency of insert

• Find correct leaf: O(log2 M logM n)

• Insert in leaf:  O(L)

• Split leaf: O(L)

• Split parents all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:

– Splits are not that common (only required when a node is FULL, 

M and L are likely to be large, and after a split, will be half empty)

– Splitting the root is extremely rare

– Remember disk accesses were the name of the game:

O(logM n)
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B-Tree Reminder: Another dictionary

• Before we talk about deletion, just keep in mind overall idea:

– Large data sets won’t fit entirely in memory

– Disk access is slow

– Set up tree so we do one disk access per node in tree

– Then our goal is to keep tree shallow as possible

– Balanced binary tree is a good start, but we can do better 

than log2n height

– In an M-ary tree, height drops to logMn

• Why not set M really really high?  Height 1 tree…

• Instead, set M so that each node fits in a disk block
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Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

And Now for Deletion…

M = 3 L = 3

36

38
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Easy case: Leaf still has enough data; just remove



Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16 18

30

36 40

36

38

18

40

45

M = 3 L = 3
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Is there a problem?



3

12

14

16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45
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Adopt from neighbor!



Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14
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Is there a problem?



3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14
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Merge with neighbor!

But hey, Is there a problem?



3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45
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Adopt from neighbor!



3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3
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Delete(14)



Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45
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Is there a problem?



3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

40

36

38

36

40

45
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Merge with neighbor!

But hey, Is there a problem?



3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3
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Merge with neighbor!

But hey, Is there a problem?



36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45
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Pull out the root!



Deletion Algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

– If a neighbor has >  L/2 items, adopt and update parent

– Else merge node with neighbor

• Guaranteed to have a legal number of items

• Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1 children, 

underflow!

– …
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Deletion algorithm (continued)

3. If an internal node has M/2 - 1 children

– If a neighbor has >  M/2 items, adopt and update parent

– Else merge node with neighbor

• Guaranteed to have a legal number of items

• Parent now has one less node, may need to continue 

up the tree

If we merge all the way up through the root, that’s fine unless the 

root went from 2 children to 1

– In that case, delete the root and make child the root

– This is the only case that decreases tree height
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Worst-Case Efficiency of Delete

• Find correct leaf: O(log2 M logM n)

• Remove from leaf:  O(L)

• Adopt from or merge with neighbor: O(L)

• Adopt or merge all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:

– Merges are not that common

– Disk accesses are the name of the game: O(logM n)
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Insert vs delete comparison

Insert

• Find correct leaf:

• Insert in leaf:

• Split leaf:

• Split parents all the way up to root:

Delete

• Find correct leaf:

• Remove from leaf:

• Adopt/merge from/with neighbor leaf:

• Adopt or merge all the way up to root:

O(log2 M logM n)

O(L)

O(L)

O(M logM n)

O(log2 M logM n)

O(L)

O(L)

O(M logM n)
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B Trees in Java?

For most of our data structures, we have encouraged writing high-

level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works” to 

understand why this is probably a bad idea for B trees

– If you just want a balanced tree with worst-case logarithmic 

operations, no problem

• If M=3, this is called a 2-3 tree 

• If M=4, this is called a 2-3-4 tree

– Assuming our goal is efficient number of disk accesses

• Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…
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Naïve approach in Java

Even if we assume data items have int keys, you cannot get the 

data representation you want for “really big data” 

interface Keyed {
int getKey();

}
class BTreeNode<E implements Keyed> {
static final int M = 128;
int[]          keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;
…

}
class BTreeLeaf<E implements Keyed> {
static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0;
…

}
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What that looks like in Java
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BTreeNode (Interior node) 

122045

70

BTreeLeaf (Leaf node)

20

(array of M-1 ints)

(array of M refs to 

BTreeNodes)

(array of L refs to 

data objects)

All the red references indicate 

“unnecessary” indirection that 

might be avoided in another 

programming language.

numChildren

children

keys

numItems

data

Note: data objects 

not in contiguous 

memory.

…

…

…



The moral

• The whole idea behind B trees was to keep related data in 

contiguous memory

• But that’s “the best you can do” in Java

– Again, the advantage is generic, reusable code

– But for your performance-critical web-index, not the way to 

implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening 

objects into arrays”

• Levels of indirection matter!
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Conclusion: Balanced Trees

• Balanced trees make good dictionaries because they guarantee 
logarithmic-time find, insert, and delete

– Essential and beautiful computer science

– But only if you can maintain balance within the time bound

• AVL trees maintain balance by tracking height and allowing all 

children to differ in height by at most 1

• B trees maintain balance by keeping nodes at least half full and 

all leaves at same height

• Other great balanced trees (see text; worth knowing they exist)

– Red-black trees: all leaves have depth within a factor of 2

– Splay trees: self-adjusting; amortized guarantee; no extra 

space for height information
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