CSE 332: Data Structures & Parallelism

Lecture 5: Algorithm Analysis II

Ruth Anderson
Autumn 2017
Today

- Finish up Binary Heaps
- Analyzing Recursive Code
- Solving Recurrences
Analyzing code ("worst case")

Basic operations take "some amount of" constant time
 – Arithmetic (fixed-width)
 – Assignment
 – Access one Java field or array index
 – Etc.
(This is an approximation of reality: a very useful "lie".)

<table>
<thead>
<tr>
<th>Consecutive statements</th>
<th>Sum of time of each statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditionals</td>
<td>Time of condition plus time of slower branch</td>
</tr>
<tr>
<td>Loops</td>
<td>Num iterations * time for loop body</td>
</tr>
<tr>
<td>Function Calls</td>
<td>Time of function’s body</td>
</tr>
<tr>
<td>Recursion</td>
<td>Solve recurrence equation</td>
</tr>
</tbody>
</table>
Linear search

Find an integer in a sorted array

// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
 for(int i=0; i < arr.length; ++i)
 if(arr[i] == k)
 return true;
 return false;
}

Best case: 6 “ish” steps = O(1)
Worst case: 5 “ish” * (arr.length) = O(arr.length)
Analyzing Recursive Code

• Computing run-times gets interesting with recursion
• Say we want to perform some computation recursively on a list of size n
 – Conceptually, in each recursive call we:
 • Perform some amount of work, call it \(w(n) \)
 • Call the function recursively with a smaller portion of the list

• So, if we do \(w(n) \) work per step, and reduce the problem size in the next recursive call by 1, we do total work:
 \[
 T(n) = w(n) + T(n-1)
 \]
• With some base case, like \(T(1) = 5 = O(1) \)
Example Recursive code: sum array

Recursive:
- Recurrence is some constant amount of work $O(1)$ done n times

int sum(int[] arr){
 return help(arr,0);
}
int help(int[] arr, int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr, i+1);
}

Each time $help$ is called, it does that $O(1)$ amount of work, and then calls $help$ again on a problem one less than previous problem size.

Recurrence Relation: $T(n) = O(1) + T(n-1)$
Solving Recurrence Relations

• Say we have the following recurrence relation:
 \[T(n) = 6 \text{ “ish”} + T(n-1) \]
 \[T(1) = 9 \text{ “ish”} \quad \leftarrow \text{base case} \]

• Now we just need to solve it; that is, reduce it to a closed form.

• Start by writing it out:
 \[
 T(n) = 6 + T(n-1) \\
 = 6 + 6 + T(n-2) \\
 = 6 + 6 + 6 + T(n-3) \\
 = 6 + 6 + 6 + \ldots + 6 + T(1) = 6 + 6 + 6 + \ldots + 6 + 9 \\
 = 6k + T(n-k) \\
 = 6k + 9, \text{ where } k \text{ is the # of times we expanded } T() \\
 \\
 \]

• We expanded it out \(n-1 \) times, so
 \[
 T(n) = 6k + T(n-k) \\
 = 6(n-1) + T(1) = 6(n-1) + 9 \\
 = 6n + 3 = O(n) \\
 \\
 \]

Or When does \(n-k=1 \)?
Answer: when \(k=n-1 \)
Binary search

Find an integer in a *sorted* array

– Can also be done non-recursively but “doesn’t matter” here

```
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi+lo)/2;  // i.e., lo+(hi-lo)/2
    if (lo==hi) return false;
    if (arr[mid]==k) return true;
    if (arr[mid]< k) return help(arr, k, mid+1, hi);
    else return help(arr, k, lo, mid);
}
```
Binary search

Best case: 9 “ish” steps = $O(1)$
Worst case: $T(n) = 10 “ish” + T(n/2)$ where n is hi-lo
 • $O(\log n)$ where n is array.length
 • Solve recurrence equation to know that...

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    return help(arr, k, 0, arr.length);
}

boolean help(int[] arr, int k, int lo, int hi) {
    int mid = (hi + lo) / 2;
    if(lo == hi) return false;
    if(arr[mid] == k) return true;
    if(arr[mid] < k) return help(arr, k, mid + 1, hi);
    else return help(arr, k, lo, mid);
}
```
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 \[T(n) = 10 + T(n/2) \quad T(1) = 15 \]

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case.
Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?
 - \(T(n) = 10 + T(n/2) \) \(T(1) = 15 \)

2. “Expand” the original relation to find an equivalent general expression in terms of the number of expansions.
 - \(T(n) = 10 + 10 + T(n/4) \)
 = \(10 + 10 + 10 + T(n/8) \)
 = …
 = \(10k + T(n/(2^k)) \) (where \(k \) is the number of expansions)

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case
 - \(n/(2^k) = 1 \) means \(n = 2^k \) means \(k = \log_2 n \)
 - So \(T(n) = 10 \log_2 n + 15 \) (get to base case and do it)
 - So \(T(n) \) is \(O(\log n) \)
sum array again

Two “obviously” linear algorithms: \(T(n) = O(1) + T(n-1) \)

Iterative:

```java
int sum(int[] arr) {
    int ans = 0;
    for(int i=0; i<arr.length; ++i)
        ans += arr[i];
    return ans;
}
```

Recursive:

```java
int sum(int[] arr) {
    return help(arr,0);
}
int help(int[] arr, int i) {
    if(i==arr.length)
        return 0;
    return arr[i] + help(arr,i+1);
}
```

 Recursive:

- Recurrence is \(c + c + \ldots + c \) for \(n \) times
What about a **binary** version of sum?

```c
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi)    return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```
What about a **binary** version of sum?

```java
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi)  return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

Recurrence is $T(n) = O(1) + 2T(n/2)$

- $1 + 2 + 4 + 8 + \ldots$ for $\log n$ times
- $2^{(\log n)} – 1$ which is proportional to n (by definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than $O(n)$ – have to read whole array
Parallelism teaser

- But suppose we could do two recursive calls at the same time
 - Like having a friend do half the work for you!

```java
int sum(int[] arr){
    return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
    if(lo==hi) return 0;
    if(lo==hi-1) return arr[lo];
    int mid = (hi+lo)/2;
    return help(arr,lo,mid) + help(arr,mid,hi);
}
```

- If you have as many “friends of friends” as needed, the recurrence is now $T(n) = O(1) + 1 T(n/2)$
 - $O(\log n)$: same recurrence as for \texttt{find}
Really common recurrences

Should know how to solve recurrences but also recognize some really common ones:

\[T(n) = O(1) + T(n-1) \] \hspace{1cm} \text{linear}
\[T(n) = O(1) + 2T(n/2) \] \hspace{1cm} \text{linear}
\[T(n) = O(1) + T(n/2) \] \hspace{1cm} \text{logarithmic}
\[T(n) = O(1) + 2T(n-1) \] \hspace{1cm} \text{exponential}
\[T(n) = O(n) + T(n-1) \] \hspace{1cm} \text{quadratic}
\[T(n) = O(n) + T(n/2) \] \hspace{1cm} \text{linear}
\[T(n) = O(n) + 2T(n/2) \] \hspace{1cm} O(n \log n)

Note big-Oh can also use more than one variable
- Example: can sum all elements of an \(n \)-by-\(m \) matrix in \(O(nm) \)