CSE 332: Data Structures & Parallelism

Lecture 3: Priority Queues

Ruth Anderson
Autumn 2017
Today

• Finish up Asymptotic Analysis
• New ADT! Priority Queues
Scenario

What is the difference between waiting for service at a pharmacy versus an ER?

Pharmacies usually follow the rule
First Come, First Served

Emergency Rooms assign priorities
based on each individual's need
A new ADT: Priority Queue

• Textbook Chapter 6
 – We will go back to binary search trees (ch4) and hash tables (ch5) later
 – Nice to see a new and surprising data structure first
• A priority queue holds compare-able data
 – Unlike stacks and queues need to compare items
 • Given \(x \) and \(y \), is \(x \) less than, equal to, or greater than \(y \)
 • What this means can depend on your data
 • Much of course will require comparable data: e.g. sorting
 – Integers are comparable, so will use them in examples
 • But the priority queue ADT is much more general
 • Typically two fields, the priority and the data
Priority Queue ADT

• Assume each item has a “priority”
 – The *lesser* item is the one with the *greater* priority
 – So “priority 1” is more important than “priority 4”
 – Just a convention, could also do a maximum priority

• Main Operations:
 – *insert*
 – *deleteMin*

• Key property: *deleteMin* returns and deletes from the queue the item with greatest priority (lowest priority value)
 – Can resolve ties arbitrarily
Aside: We will use ints as data and priority

For simplicity in lecture, we’ll often suppose items are just ints and the int is also the priority

- So an operation sequence could be
 insert 6
 insert 5
 \(x = \text{deleteMin} \quad // \text{Now } x = 5.\)

- int priorities are common, but really just need comparable

- Not having “other data” is very rare
 - Example: print job has a priority and the file to print is the data
Priority Queue Example

- *insert* *a* with priority 5
- *insert* *b* with priority 3
- *insert* *c* with priority 4
- *w* = *deleteMin*
- *x* = *deleteMin*
- *insert* *d* with priority 2
- *insert* *e* with priority 6
- *y* = *deleteMin*
- *z* = *deleteMin*

After execution:

To simplify our examples, we will just use the priority values from now on.

Analogy: *insert* is like *enqueue*, *deleteMin* is like *dequeue*

But the whole point is to use priorities instead of FIFO
Priority Queue Example

To simplify our examples, we will just use the priority values from now on.

insert a with priority 5
insert b with priority 3
insert c with priority 4
w = deleteMin
x = deleteMin
insert d with priority 2
insert e with priority 6
y = deleteMin
z = deleteMin

after execution:
w = b
x = c
y = d
z = a

Analogy: insert is like enqueue, deleteMin is like dequeue.
But the whole point is to use priorities instead of FIFO.
Applications

Like all good ADTs, the priority queue arises often
 – Sometimes “directly”, sometimes less obvious

• Run multiple programs in the operating system
 – “critical” before “interactive” before “compute-intensive”
 – Maybe let users set priority level
• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (cf. CSE143)
• Sort: \texttt{insert} all, then repeatedly \texttt{deleteMin}
More applications

• “Greedy” algorithms
 – Select the ‘best-looking’ choice at the moment
 – Will see an example when we study graphs in a few weeks

• Discrete event simulation (system modeling, virtual worlds, …)
 – Simulate how state changes when events fire
 – Each event e happens at some time t and generates new events e_1, …, e_n at times $t+t_1$, …, $t+t_n$
 – Naïve approach: advance “clock” by 1 unit at a time and process any events that happen then
 – Better:
 • Pending events in a priority queue (priority = time happens)
 • Repeatedly: deleteMin and then insert new events
 • Effectively, “set clock ahead to next event”
Preliminary Implementations of Priority Queue ADT

<table>
<thead>
<tr>
<th></th>
<th>insert</th>
<th>deleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsorted Linked-List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Circular Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted Linked-List</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary Search Tree (BST)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Worst case, Assume arrays have enough space
Aside: More on possibilities

- Note: If priorities are inserted in random order, binary search tree will likely do better than $O(n)$
 - $O(\log n)$ insert and $O(\log n)$ deleteMin on average
 - Could get same performance from a balanced binary search tree (e.g. AVL tree we will study later)

- One more idea: if priorities are 0, 1, ..., k can use array of lists
 - insert: add to front of list at $arr[priority]$, $O(1)$
 - deleteMin: remove from lowest non-empty list $O(k)$
Our Data Structure: The Heap

The Heap:
- Worst case: $O(\log n)$ for insert
- Worst case: $O(\log n)$ for deleteMin
- If items arrive in random order, then the average-case of insert is $O(1)$
- Very good constant factors

Key idea: Only pay for functionality needed
- We need something better than scanning unsorted items
- But we do not need to maintain a full sorted list

- We will visualize our heap as a tree, so we need to review some tree terminology
Q: Reviewing Some Tree Terminology

root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendants(G):

subtree(G):
Q: Some More Tree Terminology

depth(B):
height(G):
height(T):
degree(B):
branching factor(T):
Types of Trees

Binary tree: Every node has \(\leq 2 \) children

n-ary tree: Every node has \(\leq n \) children

Perfect tree: Every row is completely full

Complete tree: All rows except possibly the bottom are completely full, and it is filled from left to right
Some Basic Tree Properties

Nodes in a perfect binary tree of height h?

Leaf nodes in a perfect binary tree of height h?

Height of a perfect binary tree with n nodes?

Height of a complete binary tree with n nodes?
Properties of a Binary Min-Heap

More commonly known as a **binary heap** or simply a **heap**

- **Structure Property:**
 A complete [binary] tree

- **Heap Property:**
 The priority of every non-root node is greater than (or possibly equal to) the priority of its parent

How is this different from a binary search tree?
Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

- **Structure Property:**
 A complete [binary] tree

- **Heap Order Property:**
 The priority of every non-root node is greater than the priority of its parent

A Heap

```
      10
     /  
   20   80
  /    /  
40    85  99
 /      /  
50    60    
```

Not a Heap

```
      30
     /  
   20   80
  /    /  
13    25    
```
Properties of a Binary Min-Heap

• Where is the minimum priority item?

• What is the height of a heap with n items?

A Heap

10

20

40

50

60

700

80

85

99
Heap Operations

- findMin:
- deleteMin: percolate down.
- insert(val): percolate up.
Operations: basic idea

• **findMin:**
 return `root.data`

• **deleteMin:**
 1. `answer = root.data`
 2. Move right-most node in last row to root to restore structure property
 3. “Percolate down” to restore heap order property

• **insert:**
 1. Put new node in next position on bottom row to restore structure property
 2. “Percolate up” to restore heap order property

Overall strategy:
• **Preserve complete tree structure property**
• **This may break heap order property**
• **Percolate to restore heap order property**
DeleteMin Implementation

1. Delete value at root node (and store it for later return)

2. There is now a "hole" at the root. We must "fill" the hole with another value, must have a tree with one less node, and it must still be a complete tree

3. The "last" node is the is obvious choice, but now the heap order property is violated

4. We **percolate down** to fix the heap order:
 - While greater than either child
 - Swap with smaller child
Percolate Down:

- Keep comparing with both children
- Move smaller child up and go down one level
- Done if both children are ≥ item or reached a leaf node
- Why does this work? What is the run time?
DeleteMin: Run Time Analysis

- Run time is $O(\text{height of heap})$

- A heap is a complete binary tree

- Height of a complete binary tree of n nodes?
 - $\text{height} = \lceil \log_2(n) \rceil$

- Run time of `deleteMin` is $O(\log n)$
Insert

- Add a value to the tree
- Structure and heap order properties must still be correct afterwards
Insert: Maintain the Structure Property

- There is only **one** valid tree shape after we add one more node!
- So put our new data there and then focus on restoring the heap order property
Maintain the heap order property

Percolate up:
- Put new data in new location
- If parent larger, swap with parent, and continue
- Done if parent ≤ item or reached root
- Why does this work? What is the run time?
A Clever Trick for Storing the Heap…

Clearly, insert and deleteMin are worst-case $O(\log n)$
- But we promised average-case $O(1)$ insert (how??)

Insert requires access to the “next to use” position in the tree
- Walking the tree from root to leaf requires $O(\log n)$ steps
- Insert and Deletemin would have to update the “next to use” reference each time: $O(\log n)$

We should only pay for the functionality we need!!
- Why have we insisted the tree be complete? 😊

All complete trees of size n contain the same edges
- So why are we even representing the edges?

Here comes the really clever bit about implementing heaps!!!
Array Representation of a Binary Heap

From node i:
• left child:
• right child:
• parent:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

• We skip index 0 to make the math simpler
• Actually, it can be a good place to store the current size of the heap
Array Representation of a Binary Heap

From node i:
- left child: $2i$
- right child: $2i + 1$
- parent: $i / 2$

- We skip index 0 to make the math simpler
- Actually, it can be a good place to store the current size of the heap