CSE332: Data Structures & Parallelism
Lecture 2: Algorithm Analysis

Ruth Anderson
Autumn 2017
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition
What do we care about?

• Correctness:
 – Does the algorithm do what is intended.

• Performance:
 – Speed time complexity
 – Memory space complexity

• Why analyze?
 – To make good design decisions
 – Enable you to look at an algorithm (or code) and identify the bottlenecks, etc.
Q: How should we compare two algorithms?
A: How should we compare two algorithms?

• Uh, why NOT just run the program and time it??
 – Too much variability, not reliable or portable:
 • Hardware: processor(s), memory, etc.
 • OS, Java version, libraries, drivers
 • Other programs running
 • Implementation dependent
 – Choice of input
 • Testing (inexhaustive) may miss worst-case input
 • Timing does not explain relative timing among inputs
 (what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation
 – Even before creating the implementation (“coding it up”)
Comparing algorithms

When is one *algorithm* (not *implementation*) better than another?
- Various possible answers (clarity, security, …)
- But a big one is *performance*: for sufficiently large inputs, runs in less time (our focus) or less space

Large inputs (n) because probably any algorithm is “plenty good” for small inputs (if n is 10, probably anything is fast enough)

Answer will be *independent* of CPU speed, programming language, coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up and timing it on some test cases”
- Can do analysis before coding!
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition
Analyzing code ("worst case")

- Basic operations take "some amount of" constant time
 - Arithmetic (fixed-width)
 - Assignment
 - Access one Java field or array index
 - Etc.

(This is an approximation of reality: a very useful "lie".)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutive</td>
<td>Sum of time of each statement</td>
</tr>
<tr>
<td>Conditionals</td>
<td>Time of condition plus time of slower</td>
</tr>
<tr>
<td>Loops</td>
<td>Num iterations * time for loop body</td>
</tr>
<tr>
<td>Function Calls</td>
<td>Time of function’s body</td>
</tr>
<tr>
<td>Recursion</td>
<td>Solve recurrence equation</td>
</tr>
</tbody>
</table>
Complexity cases

We’ll start by focusing on two cases:

- **Worst-case complexity**: max # steps algorithm takes on “most challenging” input of size N

- **Best-case complexity**: min # steps algorithm takes on “easiest” input of size N
Example

Find an integer in a sorted array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k){
    ???
}
```
Linear search

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case:

Worst case:
Linear search

Find an integer in a *sorted* array

```java
// requires array is sorted
// returns whether k is in array
boolean find(int[] arr, int k) {
    for (int i = 0; i < arr.length; ++i)
        if (arr[i] == k)
            return true;
    return false;
}
```

Best case: 6 “ish” steps = $O(1)$
Worst case: 5 “ish” * (arr.length) = $O(arr.length)$
Remember a faster search algorithm?
Ignoring constant factors

• So binary search is $O(\log n)$ and linear is $O(n)$
 – But which will actually be faster?
 – Depending on constant factors and size of n, in a particular situation, linear search could be faster….

• Could depend on constant factors
 – How many assignments, additions, etc. for each n
 – And could depend on size of n

• **But** there exists some n_0 such that for all $n > n_0$ binary search wins

• Let’s play with a couple plots to get some intuition…
Example

- Let’s try to “help” linear search
 - Run it on a computer 100x as fast (say 2017 model vs. 1990)
 - Use a new compiler/language that is 3x as fast
 - Be a clever programmer to eliminate half the work
 - So doing each iteration is 600x as fast as in binary search
- Note: 600x still helpful for problems without logarithmic algorithms!

9/29/2017
Logarithms and Exponents

- Since so much is binary in CS, \(\log \) almost always means \(\log_2 \)
- Definition: \(\log_2 x = y \) if \(x = 2^y \)
- So, \(\log_2 1,000,000 = \) “a little under 20”
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data – play with it!
Aside: Log base doesn’t matter (much)

“Any base B log is equivalent to base 2 log within a constant factor”

- And we are about to stop worrying about constant factors!
- In particular, $\log_2 x = 3.22 \log_{10} x$
- In general, we can convert log bases via a constant multiplier
- Say, to convert from base B to base A:
 $$\log_B x = \frac{\log_A x}{\log_A B}$$
Review: Properties of logarithms

• $\log(A\times B) = \log A + \log B$
 – So $\log(N^k) = k \log N$

• $\log(A/B) = \log A - \log B$

• $x = \log_2 2^x$

• $\log(\log x)$ is written $\log \log x$
 – Grows as slowly as 2^{2^y} grows fast
 – Ex:
 \[
 \log_2 \log_2 4\text{billion} \sim \log_2 \log_2 2^{32} = \log_2 32 = 5
 \]

• $(\log x)(\log x)$ is written $\log^2 x$
 – It is greater than $\log x$ for all $x > 2$
Logarithms and Exponents
Logarithms and Exponents
Logarithms and Exponents
Today – Algorithm Analysis

• What do we care about?
• How to compare two algorithms
• Analyzing Code
• Asymptotic Analysis
• Big-Oh Definition
Asymptotic notation

About to show formal definition, which amounts to saying:
1. Eliminate low-order terms
2. Eliminate coefficients

Examples:
- $4n + 5$
- $0.5n \log n + 2n + 7$
- $n^3 + 2^n + 3n$
- $n \log (10n^2)$
Examples

True or false?

1. \(4+3n\) is \(O(n)\)
2. \(n+2\log n\) is \(O(\log n)\)
3. \(\log n+2\) is \(O(1)\)
4. \(n^{50}\) is \(O(1.1^n)\)

Notes:

• Do NOT ignore constants that are not multipliers:
 – \(n^3\) is \(O(n^2)\) : FALSE
 – \(3^n\) is \(O(2^n)\) : FALSE
• When in doubt, refer to the definition
Examples (Answers)

True or false?

1. 4+3n is O(n)
 True

2. n+2logn is O(logn)
 False

3. logn+2 is O(1)
 False

4. n^{50} is O(1.1^n)
 True

Notes:
• Do NOT ignore constants that are not multipliers:
 – n^3 is O(n^2) : FALSE
 – 3^n is O(2^n) : FALSE
• When in doubt, refer to the definition
Big-Oh relates functions

We use O on a function $f(n)$ (for example n^2) to mean the set of functions with asymptotic behavior less than or equal to $f(n)$

So $(3n^2+17)$ **is in** $O(n^2)$
- $3n^2+17$ and n^2 have the same asymptotic behavior

Confusingly, we also say/write:
- $(3n^2+17)$ **is** $O(n^2)$
- $(3n^2+17) = O(n^2)$

But we would never say $O(n^2) = (3n^2+17)$
Formally Big-Oh

Definition: \(g(n) \) is in \(O(f(n)) \) iff there exist positive constants \(c \) and \(n_0 \) such that

\[
g(n) \leq c f(n) \quad \text{for all } n \geq n_0
\]

To show \(g(n) \) is in \(O(f(n)) \), pick a \(c \) large enough to “cover the constant factors” and \(n_0 \) large enough to “cover the lower-order terms”

- Example: Let \(g(n) = 3n + 4 \) and \(f(n) = n \)

 \(c = 5 \) and \(n_0 = 5 \) is one possibility

This is “less than or equal to”

- So \(3n + 4 \) is also \(O(n^5) \) and \(O(2^n) \) etc.
An Example

To show $g(n)$ is in $\mathcal{O}(f(n))$, pick a c large enough to “cover the constant factors” and n_0 large enough to “cover the lower-order terms”

- Example: Let $g(n) = 4n^2 + 3n + 4$ and $f(n) = n^3$
What’s with the c?

- To capture this notion of similar asymptotic behavior, we allow a constant multiplier (called c)
- Consider:
 \[g(n) = 7n + 5 \]
 \[f(n) = n \]
- These have the same asymptotic behavior (linear), so $g(n)$ is in $O(f(n))$ even though $g(n)$ is always larger
- There is no positive n_0 such that $g(n) \leq f(n)$ for all $n \geq n_0$
- The ‘c’ in the definition allows for that:
 \[g(n) \leq c f(n) \quad \text{for all } n \geq n_0 \]
- To show $g(n)$ is in $O(f(n))$, have $c = 12$, $n_0 = 1$
What you can drop

- Eliminate coefficients because we don’t have units anyway
 - $3n^2$ versus $5n^2$ doesn’t mean anything when we have not specified the cost of constant-time operations (can re-scale)

- Eliminate low-order terms because they have vanishingly small impact as n grows

- Do NOT ignore constants that are not multipliers
 - n^3 is not $O(n^2)$
 - 3^n is not $O(2^n)$

(This all follows from the formal definition)
Big Oh: Common Categories

From fastest to slowest

$O(1)$ constant (same as $O(k)$ for constant k)
$O(\log n)$ logarithmic
$O(n)$ linear
$O(n \log n)$ “n log n”
$O(n^2)$ quadratic
$O(n^3)$ cubic
$O(n^k)$ polynomial (where is k is any constant > 1)
$O(k^n)$ exponential (where k is any constant > 1)

Usage note: “exponential” does not mean “grows really fast”, it means “grows at rate proportional to k^n for some $k>1$”
More Asymptotic Notation

• **Upper bound**: \(O(f(n)) \) is the set of all functions asymptotically less than or equal to \(f(n) \)

 \(g(n) \) is in \(O(f(n)) \) if there exist constants \(c \) and \(n_0 \) such that

 \[g(n) \leq c f(n) \text{ for all } n \geq n_0 \]

• **Lower bound**: \(\Omega(f(n)) \) is the set of all functions asymptotically greater than or equal to \(f(n) \)

 \(g(n) \) is in \(\Omega(f(n)) \) if there exist constants \(c \) and \(n_0 \) such that

 \[g(n) \geq c f(n) \text{ for all } n \geq n_0 \]

• **Tight bound**: \(\theta(f(n)) \) is the set of all functions asymptotically equal to \(f(n) \)

 Intersection of \(O(f(n)) \) and \(\Omega(f(n)) \) (can use different \(c \) values)
Regarding use of terms

A common error is to say $O(f(n))$ when you mean $\theta(f(n))$

- People often say $O()$ to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $O(n)$, which is true, but only conveys the upper-bound
- Since $f(n)=n$ is also $O(n^5)$, it’s tempting to say “this algorithm is exactly $O(n)$”
- Somewhat incomplete; instead say it is $\theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- “little-oh”: like “big-Oh” but strictly less than
 - Example: sum is $o(n^2)$ but not $o(n)$
- “little-omega”: like “big-Omega” but strictly greater than
 - Example: sum is $\omega(\log n)$ but not $\omega(n)$
What we are analyzing

• The most common thing to do is give an O or θ bound to the worst-case running time of an algorithm

• Example: True statements about binary-search algorithm
 – Common: $\theta(\log n)$ running-time in the worst-case
 – Less common: $\theta(1)$ in the best-case (item is in the middle)
 – Less common: Algorithm is $\Omega(\log \log n)$ in the worst-case (it is not really, really, really fast asymptotically)
 – Less common (but very good to know): the find-in-sorted-array problem is $\Omega(\log n)$ in the worst-case
 • No algorithm can do better (without parallelism)
 • A problem cannot be $O(f(n))$ since you can always find a slower algorithm, but can mean there exists an algorithm
Other things to analyze

• Space instead of time
 – Remember we can often use space to gain time

• Average case
 – Sometimes only if you assume something about the distribution of inputs
 • See CSE312 and STAT391
 – Sometimes uses randomization in the algorithm
 • Will see an example with sorting; also see CSE312
 – Sometimes an *amortized guarantee*
 • Will discuss in a later lecture
Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)
• Time or space (usually time)
 – Or power or dollars or …
• Best-, worst-, or average-case (usually worst)
• Upper-, lower-, or tight-bound (usually upper or tight)
Big-Oh Caveats

- Asymptotic complexity (Big-Oh) focuses on behavior for **large** \(n \) and is independent of any computer / coding trick
 - But you can “abuse” it to be misled about trade-offs
 - Example: \(n^{1/10} \) vs. \(\log n \)
 - Asymptotically \(n^{1/10} \) grows more quickly
 - But the “cross-over” point is around \(5 \times 10^{17} \)
 - So if you have input size less than \(2^{58} \), prefer \(n^{1/10} \)
- Comparing \(O() \) for **small** \(n \) values can be misleading
 - Quicksort: \(O(n \log n) \) (expected)
 - Insertion Sort: \(O(n^2) \) (expected)
 - Yet in reality Insertion Sort is faster for small \(n \)’s
 - We’ll learn about these sorts later
Addendum: Timing vs. Big-Oh?

- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, mathematically, not the implementation
 - Reason about performance as a function of n
 - Be able to mathematically prove things about performance
- Yet, timing has its place
 - In the real world, we do want to know whether implementation A runs faster than implementation B on data set C
 - Ex: Benchmarking graphics cards
- Evaluating an algorithm? Use asymptotic analysis
- Evaluating an implementation of hardware/software? Timing can be useful
Review: Properties of logarithms

- \(\log(A \times B) = \log A + \log B \)
 - So \(\log(N^k) = k \log N \)

- \(\log(A/B) = \log A - \log B \)

- \(x = \log_2 2^x \)

- \(\log(\log x) \) is written \(\log \log x \)
 - Grows as slowly as \(2^{2^y} \) grows fast
 - Ex:
 \[\log_2 \log_2 4\text{billion} \sim \log_2 \log_2 2^{32} = \log_2 32 = 5 \]

- \((\log x)(\log x) \) is written \(\log^2 x \)
 - It is greater than \(\log x \) for all \(x > 2 \)