
CSE 332: Data Abstractions

Section 3: BSTs, Recurrences, and Amortized Analysis Solutions

0. Interview Question: Binary Search Trees
Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.

Solution:
This algorithm is implemented as the BST Iterator in P2. Check it out!

1. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 1

8T (n/2) + 4n2 otherwise

Solution:
Note that a = 8, b = 2, and c = 2. Since log2(8) = 3 > 2, we have T (n) ∈ Θ(nlog2(8)) = Θ(n3) by
Master Theorem.

(b) T (n) =

{
1 if n = 1

7T (n/2) + 18n2 otherwise

Solution:
Note that a = 7, b = 2, and c = 2. Since log2(7) = 3 > 2, we have T (n) ∈ Θ(nlog2(7)) by Master
Theorem.

(c) T (n) =

{
1 if n = 1

T (n/2) + 3 otherwise

Solution:
Note that a = 1, b = 2, and c = 0. Since log2(1) = 0 = 2, we have T (n) ∈ Θ(lg(n)) by Master Theorem.

1



2. Recurrences and Closed Forms
For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a
closed form for the recurrence.
Consider the function g:

1 g(n) {
2 if (n == 1) {
3 return 1000;
4 }
5 if (g(n/3) > 5) {
6 for (int i = 0; i < n; i++) {
7 System.out.println("Yay!");
8 }
9 return 5 * g(n/3);

10 }
11 else {
12 for (int i = 0; i < n * n; i++) {
13 System.out.println("Yay!");
14 }
15 return 4 * g(n/3);
16 }
17 } • Find a recurrence for g(n).

Solution:

T (n) =

{
c0 if n = 1

2T (n/3) + c1n otherwise

• Find a closed form for g(n).

Solution:
The recursion tree has height log3(n). Level i has work

(
c1n2i

3i

)
.

So, putting it together, we have:

log3(n)−1∑
i=0

(
c1n2

i

3i

)
+ 2log3(n)c0 = c1n

log3(n)−1∑
i=0

(
2

3

)i

+ nlog3(2)c0 = c1n

(
1−

(
2
3

)log3(n)
1− 2

3

)
+ nlog3(2)c0

= 3c1n

(
1−

(
2

3

)log3(n)
)

+ nlog3(2)c0

= 3c1n

(
1− nlog3(2)

n

)
+ nlog3(2)c0

3. MULTI-pop
Consider augmenting the Stack ADT with an extra operation:

multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped

What is the amortized cost of a series of multipop’s on a Stack assuming push and pop are both O(1)?

2



Solution:
Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is
once again empty, we see the following: Note that multipop(k) takes ck time. If over the course of running the
operations, we push n items, then each item is associated with at most one multipop or pop. It follows that
the largest number of time the multipops can take in aggregate is n. Note that the smallest possible number
of operations to amortize over is n+ 1 (n pushes and 1 multipop). So, the worst amortized cost of a series of

pushes, pops, and multipops is
2n

n+ 1
= O(1).

3


