CSE 332: Data Abstractions

Section 3: BSTs, Recurrences, and Amortized Analysis Solutions

0. Interview Question: Binary Search Trees

Write pseudo-code to perform an in-order traversal in a binary search tree without using recursion.

Solution:

This algorithm is implemented as the BST Iterator in P2. Check it out!

1. Big-Oh Bounds for Recurrences

For each of the following, find a Big-Oh bound for the provided recurrence.
(a) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 8 T(n / 2)+4 n^{2} & \text { otherwise }\end{cases}$

Solution:

Note that $a=8, b=2$, and $c=2$. Since $\log _{2}(8)=3>2$, we have $T(n) \in \Theta\left(n^{\log _{2}(8)}\right)=\Theta\left(n^{3}\right)$ by Master Theorem.
(b) $T(n)= \begin{cases}1 & \text { if } n=1 \\ 7 T(n / 2)+18 n^{2} & \text { otherwise }\end{cases}$

Solution:

Note that $a=7, b=2$, and $c=2$. Since $\log _{2}(7)=3>2$, we have $T(n) \in \Theta\left(n^{\log _{2}(7)}\right)$ by Master Theorem.
(c) $T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n / 2)+3 & \text { otherwise }\end{cases}$

Solution:

Note that $a=1, b=2$, and $c=0$. Since $\log _{2}(1)=0=2$, we have $T(n) \in \Theta(\lg (n))$ by Master Theorem.

2. Recurrences and Closed Forms

For the following code snippet, find a recurrence for the worst case runtime of the function, and then find a closed form for the recurrence.
Consider the function g :

```
g(n) {
    if (n == 1) {
        return 1000;
    }
    if (g(n/3) > 5) {
        for (int i = 0; i < n; i++) {
            System.out.println("Yay!");
        }
        return 5 * g(n/3);
    }
    else {
        for (int i = 0; i < n * n; i++) {
            System.out.println("Yay!");
        }
        return 4*g(n/3);
    }
    } Find a recurrence for }g(n)\mathrm{ .
```


Solution:

$$
T(n)= \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 3)+c_{1} n & \text { otherwise }\end{cases}
$$

- Find a closed form for $g(n)$.

Solution:

The recursion tree has height $\log _{3}(n)$. Level i has work $\left(\frac{c_{1} n 2^{i}}{3^{i}}\right)$.
So, putting it together, we have:

$$
\begin{aligned}
\sum_{i=0}^{\log _{3}(n)-1}\left(\frac{c_{1} n 2^{i}}{3^{i}}\right)+2^{\log _{3}(n)} c_{0}=c_{1} n \sum_{i=0}^{\log _{3}(n)-1}\left(\frac{2}{3}\right)^{i}+n^{\log _{3}(2)} c_{0} & =c_{1} n\left(\frac{1-\left(\frac{2}{3}\right)^{\log _{3}(n)}}{1-\frac{2}{3}}\right)+n^{\log _{3}(2)} c_{0} \\
& =3 c_{1} n\left(1-\left(\frac{2}{3}\right)^{\log _{3}(n)}\right)+n^{\log _{3}(2)} c_{0} \\
& =3 c_{1} n\left(1-\frac{n^{\log _{3}(2)}}{n}\right)+n^{\log _{3}(2)} c_{0}
\end{aligned}
$$

3. MULTI-pop

Consider augmenting the Stack ADT with an extra operation:
multipop(k): Pops up to k elements from the Stack and returns the number of elements it popped What is the amortized cost of a series of multipop's on a Stack assuming push and pop are both $\mathcal{O}(1)$?

Solution:

Consider an empty Stack. If we run various operations (multipop, pop, and push) on the Stack until it is once again empty, we see the following: Note that multipop(k) takes $c k$ time. If over the course of running the operations, we push n items, then each item is associated with at most one multipop or pop. It follows that the largest number of time the multipops can take in aggregate is n. Note that the smallest possible number of operations to amortize over is $n+1$ (n pushes and 1 multipop). So, the worst amortized cost of a series of pushes, pops, and multipops is $\frac{2 n}{n+1}=\mathcal{O}(1)$.

