
CSE 332: Data Abstractions

QuickCheck: Recurrences Solutions (due Thursday, January 21)
0. Happening Happening Happening
Consider the following code:

1 f(n) {
2 if (n == 0) {
3 return 0;
4 }
5
6 int result = 0;
7 for (int i = 0; i < n; i++) {
8 for (int j = 0; j < i; j++) {
9 result += j;

10
11 }
12 }
13 return f(n/2) + result + f(n/2);
14 }

(a) Find a recurrence for the time complexity of f(n).

Solution:
We look at the three separate cases (base case, non-recursive work, recursive work):

• The base case is O(1), because we only do a return statement

• The non-recursive work is O(1) for the assignments and if tests and =

n∑
i=0

i =
n(n+ 1)

2
for the for

loops.

• The recursive work is 2T (n/2).

Putting these together, we get:

T (n) =

1 if n = 1

2T (n/2) +
n(n+ 1)

2
otherwise

(b) Find a Big-Oh bound for your recurrence.

Solution:

The recursion tree has lg(n) height, and each level of the tree does
(n

2i

)2
work.

Note that the total work is then n2

lg(n)∑
i=0

(
1

2i

)2

= n2

lg(n)∑
i=0

(
1

4i

)
< n2

∞∑
i=0

(
1

4i

)
=

n2

1− 1
4

∈ O(n2).

So, T (n) ∈ O(n2).

1

