CSE 332: Data Abstractions

Section 2: Heaps, Asymptotics, & Recurrences Solutions

0. Heaps

Insert 1, 3, 2, 4, 6, 8, 7, 5 into a min heap.

Now, insert the same values into a max heap.

Now, insert the same values into a min heap, but use Floyd's buildHeap algorithm.

1. Big-Oh Proofs
For each of the following, prove that f € O(g).

(a) f(n)=17n g(n) = >~

Solution: Choose ¢ = 70, ng = 1. Then, note that 7n = T < 70 (&) for all n > 1. So, f(n) € O(g(n)).

(b) f(n) = 1000 g(n) = 3n®

Solution: Choose ¢ = 3, ng = 1000. Then, note that 1000 < n < n® < 3n? for all n > 1000. So,

f(n) € O(g(n)).

(c) f(n) =m?+3n g(n) =n?

Solution: Choose ¢ = 14, ng = 1. Then, note that 7n? + 3n < 7(n4 + n4) < 14n* for all n > 1. So,

f(n) € O(g(n)).

(d) f(n) =n+2nlgn g(n) =nlgn

Solution: Choose ¢ = 3, ng = 1. Then, note that n + 2nlgn < nlgn + 2nlgn = 3nlgn for all n > 1. So,

f(n) € O(g(n)).

2. Is Your Program Running? Better Catch It!

For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)

1 int x = 0;

2 for (int i =n; i>=0; i——) {
3 if ((1 % 3) == 0) {

4 break;

5 }

6 else {

7 X += n;

8 }

9 1}

Solution: This is ©(1), because n, n — 1, or n — 2 will be divisible by three. So, the loop runs at most 3
times.

int x = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < (n xn / 3); j++) {
X +=j;

}

[o N, I SOV I ST

}

Solution:
n—1n?/3—1 n

SIS

2 2
% =n <T;> =0(n%)
=0 j=0 i—0

int x = 0;
for (int i = 0; i <= n; i++) {
for (int j = 0; j < (1 * i); j++) {
X +=j;

}

[o) NG, I SOV I ST

}

Solution:
n -1

ZZ 1 :ZZQ _ (n(n—l—l)ﬁ(2n+1)> _ o)

i=0 j=0 i=0

3. Induction Shminduction
n

Prove Z 20 = 9"+ _ 1 by induction on n.
i—0

Solution:

Let P(n) be the statement Z 20 = 2™ _ 1" for all n € N. We prove P(n) by induction on n.
=0

0
Base Case. Note that ZT =0=2"—1. So, P(0) is true.
i=0

Induction Hypothesis. Suppose P(k) is true for some k € N.

Induction Step. Note that

k+1 k

S i = 3 o4 ok

=0 =0
— 2k+1 14+ 2/€+1 [By |H]
— 2k+2 -1

Note that this is exactly P(k + 1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.
(a) f(n) € ©((g(n)) = f(n) € O(g(n))

Solution:
This is true. By definition of f(n) € ©((g(n)), we have f(n) € O(g(n)).

(b) f(n) € ©(g(n)) = g(n) € O(f(n))
Solution:
This is true. By definition of f(n) € ©(g(n)), we have f(n) € O(g(n)) and f(n) € 2(g(n)). So, there
exist ng, n1,cop,c1 > 0 such that f(n) < cog(n) for all n > ng and f(n) > c1g(n) for all n > n;. Define
ny = max(ng,n1 and note that both inequalities hold for all n > ng. Then, dividing both sides by their
constants, we have:

1 1
co’ 1

It follows that g(n)is©(f(n)).

() f(n) € Q(g(n) = g(n) € O(f(n))

Solution:

So, we've found constants () and a minimum n (ng) that satisfy the definitions of Omega and Oh.

This is true. This is basically identical to the previous part (except we only have to do half the work).

5. Asymptotic Analysis
For each of the following, determine if f € O(g), f € Q(g), f € O(g), several of these

(a) f(n) =logn g(n) =loglogn
Solution: f(n) € Q(g(n))

(b) fln)=2" g(n) =3"
Solution: f(n) € O(g(n))

(c) f(n) =2%" g(n) =2"

Solution: f(n) € Q(g(n))

, or none of these.

6. Recurrences and Closed Forms
For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then
find a closed form for the recurrence.

(a) Consider the function f:

1 f(n) {

2 if (n == 0) {

3 return 1;

4 }

5 return 2 x f(n — 1) + 1;
6 }

e Find a recurrence for f(n).

Solution:

T(n) Co if n=20
n)=
T(n—1)+c¢ otherwise

e Find a closed form for f(n).

Solution:

Unrolling the recurrence, we get T'(n) = c¢1 +c¢1 + -+ + ¢1 +¢o = c1n + .

n times

7. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

) T(n):{l if n=0

T(n—1)+3 otherwise

Solution:

There are n terms to unroll and each one is constant. This is ©(n).

1 if n=20
T(n—1)+T(n—2)+3 otherwise

(b) T(n) = {

Solution:

Note that this recurrence is bounded above by 7'(n) = 27'(n — 1) 4 3. If we unroll that recurrence, we get
n
34+2(3+2(3+---42(1))). This is approximately 23 x 20 = 3(2"" — 1) = O(2"). We can actually

=0
find a better bound (e.g., it's not the case that T'(n) € Q(2").

