
CSE 332: Data Abstractions

Section 2: Heaps, Asymptotics, & Recurrences Solutions

0. Heaps
Insert 1, 3, 2, 4, 6, 8, 7, 5 into a min heap.
Now, insert the same values into a max heap.
Now, insert the same values into a min heap, but use Floyd’s buildHeap algorithm.

1



1. Big-Oh Proofs
For each of the following, prove that f ∈ O(g).

(a) f(n) = 7n g(n) =
n

10

Solution: Choose c = 70, n0 = 1. Then, note that 7n = 70n
10 ≤ 70

(
n
10

)
for all n ≥ 1. So, f(n) ∈ O(g(n)).

(b) f(n) = 1000 g(n) = 3n3

Solution: Choose c = 3, n0 = 1000. Then, note that 1000 ≤ n ≤ n3 ≤ 3n3 for all n ≥ 1000. So,
f(n) ∈ O(g(n)).

(c) f(n) = 7n2 + 3n g(n) = n4

Solution: Choose c = 14, n0 = 1. Then, note that 7n2 + 3n ≤ 7(n4 + n4) ≤ 14n4 for all n ≥ 1. So,
f(n) ∈ O(g(n)).

(d) f(n) = n+ 2n lg n g(n) = n lg n

Solution: Choose c = 3, n0 = 1. Then, note that n + 2n lg n ≤ n lg n + 2n lg n = 3n lg n for all n ≥ 1. So,
f(n) ∈ O(g(n)).

2



2. Is Your Program Running? Better Catch It!
For each of the following, determine the asymptotic worst-case runtime in terms of n.

(a)

1 int x = 0;
2 for (int i = n; i >= 0; i−−) {
3 if ((i % 3) == 0) {
4 break;
5 }
6 else {
7 x += n;
8 }
9 }

Solution: This is Θ(1), because n, n− 1, or n− 2 will be divisible by three. So, the loop runs at most 3
times.

(b)

1 int x = 0;
2 for (int i = 0; i < n; i++) {
3 for (int j = 0; j < (n * n / 3); j++) {
4 x += j;
5 }
6 }

Solution:
n−1∑
i=0

n2/3−1∑
j=0

1 =

n∑
i=0

n2

3
= n

(
n2

3

)
= Θ(n3)

(c)

1 int x = 0;
2 for (int i = 0; i <= n; i++) {
3 for (int j = 0; j < (i * i); j++) {
4 x += j;
5 }
6 }

Solution:
n∑

i=0

i2−1∑
j=0

1 =

n∑
i=0

i2 =

(
n(n+ 1)(2n+ 1)

6

)
= Θ(n3)

3



3. Induction Shminduction
Prove

n∑
i=0

2i = 2n+1 − 1 by induction on n.

Solution:

Let P (n) be the statement “
n∑

i=0

2i = 2n+1 − 1” for all n ∈ N. We prove P (n) by induction on n.

Base Case. Note that
0∑

i=0

2i = 0 = 20 − 1. So, P (0) is true.

Induction Hypothesis. Suppose P (k) is true for some k ∈ N.

Induction Step. Note that

k+1∑
i=0

2i =

k∑
i=0

2i + 2k+1

= 2k+1 − 1 + 2k+1 [By IH]

= 2k+2 − 1

Note that this is exactly P (k + 1).

So, the claim is true by induction on n.

4. The Implications of Asymptotics
For each of the following, determine if the statement is true or false.

(a) f(n) ∈ Θ((g(n)) → f(n) ∈ O(g(n))

Solution:
This is true. By definition of f(n) ∈ Θ((g(n)), we have f(n) ∈ O(g(n)).

(b) f(n) ∈ Θ(g(n)) → g(n) ∈ Θ(f(n))

Solution:
This is true. By definition of f(n) ∈ Θ(g(n)), we have f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). So, there
exist n0, n1, c0, c1 > 0 such that f(n) ≤ c0g(n) for all n ≥ n0 and f(n) ≥ c1g(n) for all n ≥ n1. Define
n2 = max(n0, n1 and note that both inequalities hold for all n ≥ n2. Then, dividing both sides by their
constants, we have:

g(n) ≥ f(n)

c0

g(n) ≤ f(n)

c1

So, we’ve found constants
(

1
c0
, 1
c1

)
and a minimum n (n2) that satisfy the definitions of Omega and Oh.

It follows that g(n)isΘ(f(n)).

(c) f(n) ∈ Ω((g(n) → g(n) ∈ O(f(n))

Solution:
This is true. This is basically identical to the previous part (except we only have to do half the work).

4



5. Asymptotic Analysis
For each of the following, determine if f ∈ O(g), f ∈ Ω(g), f ∈ Θ(g), several of these, or none of these.

(a) f(n) = log n g(n) = log log n

Solution: f(n) ∈ Ω(g(n))

(b) f(n) = 2n g(n) = 3n

Solution: f(n) ∈ O(g(n))

(c) f(n) = 22n g(n) = 2n

Solution: f(n) ∈ Ω(g(n))

5



6. Recurrences and Closed Forms
For each of the following code snippets, find a recurrence for the worst case runtime of the function, and then
find a closed form for the recurrence.

(a) Consider the function f :

1 f(n) {
2 if (n == 0) {
3 return 1;
4 }
5 return 2 * f(n − 1) + 1;
6 }

• Find a recurrence for f(n).

Solution:

T (n) =

{
c0 if n = 0

T (n− 1) + c1 otherwise

• Find a closed form for f(n).

Solution:
Unrolling the recurrence, we get T (n) = c1 + c1 + · · ·+ c1︸ ︷︷ ︸

n times

+c0 = c1n+ c0.

7. Big-Oh Bounds for Recurrences
For each of the following, find a Big-Oh bound for the provided recurrence.

(a) T (n) =

{
1 if n = 0

T (n− 1) + 3 otherwise

Solution:
There are n terms to unroll and each one is constant. This is Θ(n).

(b) T (n) =

{
1 if n = 0

T (n− 1) + T (n− 2) + 3 otherwise

Solution:
Note that this recurrence is bounded above by T (n) = 2T (n− 1)+3. If we unroll that recurrence, we get

3 + 2(3 + 2(3 + · · ·+ 2(1))). This is approximately
n∑

i=0

3× 2i = 3(2n+1 − 1) = O(2n). We can actually

find a better bound (e.g., it’s not the case that T (n) ∈ Ω(2n).

6


