Adam Blank Lecture 13 Winter 2016

Data Abstractions



CSE 332: Data Abstractions

Sorting




Why Study Sorting?

A Useful Invariant

B Binary Search only works if the array is sorted

m BSTs are based around the idea of sorting the input

“Local” vs. “Global” Views of Data

m All of our data structure so far only gave us a local view:
® Heaps gave us a view of the max or min
B Stacks and Queues gave us a view of most/least recent
B Dictionaries give us a view of “associated data”

m A “global” view tells us how the elements all interact with each other

B There is no “best” sorting algorithm: most sorts have a purpose



What is SORT?

SORT is the computational problem with the following requirements:

Inputs
® An array A of E data of length L.

m A consistent, total ordering on all elements of type E:

compare(a, b)

Post-Conditions
m Forall 0<i<j<L, A[i] <A[j]

B Every element originally in the array must be somewhere in the
resulting array.

An algorithm that solves this computational problem is called a
Comparison Sort.



Properties of Sorting Algorithms

There are several important properties sorting algorithms

Definition (In-Place Sorting)

A sorting algorithm is in-place if we don't require (more than O(1))
extra space to do the sort.

It's a useful property, because:

B The less memory we use the better. ..

Definition (Stable Sorting)

A sorting algorithm is stable if the order of any equal elements remains
the same.

It's a useful property, because:

m We often want to first sort by one index and then another.

B Two objects might be equal but not completely duplicates.



Spectrum of Sorting

Fancy: Specialized:

O(nlgn) O(n)
Insertion Sort Heap Sort Counting Sort
Selection Sort Merge Sort Radix Sort

There are a lot of different sorting algorithms out there!

We're not going to cover all of them, but we will cover the ones that
demonstrate clear advantages in one way or another.



Simple Sorting: Insertion Sort

A[0] A[1] A[2] A[4] A[5] A[6] AL7] A[8] A[9] A[10] A[11]

—_—_—_—— -,
Sorted Part Unsorted Part

Runtime and Analysis
m Best Case?

Algorithm

// 1 is "# of elements sorted"

-
for (i = 0; 1 < n; i++) { = Average Case?

® Worst Case?

swap(i, findPlace(i));

// shift everything after i over
B |n-Place?

m Stable?

a b wWwN =




Simple Sorting: Selection Sort

Next Minimum

A[0] A[1] A[2] A[3] A[4] A[5] A[6] AL7] A[8] A[10] A[11]

—_—_—_—— -,
Sorted Part Unsorted Part

Runtime and Analysis

Algorith
o m Best Case?

B Average Case?
® Worst Case?

// 1 is "# of elements sorted"
for (1 = 0; 1 < n; i++) {

swap(i, findMin(i, n));

}

A W N

® [n-Place?
m Stable?




Fancy Sorting: Heap Sort

buildHeap @
_

@ @

Next Minimum

@ n deleteMins Sorted
e N i

14432 1]

AL7] A[8] A[9] A[10] A[11]

Heap Part

Algorithm

E[] A = buildHeap();
for (i =0; i <n; i++) {

swap(n — i — 1, A.deleteMin());
}

Sorted Part

Runtime and Analysis
B Best Case?
m Average Case?
m Worst Case?
B |n-Place?
m Stable?




Divide and Conquer

Divide and Conquer is a very useful algorithmic technique. It consists
of multiple steps:

1 Divide the input into smaller pieces (recursively)
2 Conquer the individual pieces as base cases

3 Combine the finished pieces together (recursively)

1 algorithm(input) {

2 if (small enough) {

3 return -(input);
4 }

5 pieces = -(input);
6 for (piece in pieces) {
7

8

9

(0]

result = -( result, _(piece) );
}

return result;

10 }



Fancy Sorting: Merge Sort

Sorted

A

Algorithm

Runtime and Analysis
m Best Case?

sort(A) {
if (A.length < 2) {
return A;
! B Average Case?

m Worst Case?

}

return merge(

sort(A[O, ..., mid]), .
sort(A[mid + 1, ...]) ® |n-Place?

m Stable?

)
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Fancy Sorting: Merge Sort

[20 [18[34 [24 [32 [ 14 [22] 33

A[0] A[1] Al2] A[3] A[4] A[5] A[6] AL7]

\
/

[20 [ 18 [ 34 | 24 | [32 [ 147]

22 [33]

AL0] A[1] A[2] A[3] A[4] A[5]

A[6] ALT]

A[0] Al1] Al2] A[3] Al4] A[5] Al6] AL7]
2] 8 (30 B9 [ 0 2] 3]
A[0] Al1] Af2] A[3] A[4] A[5] A[6] A[7T]

A0l AL K21 AG AT A5) 1G]
(182024 ]34 ] [14]22]32]33]
K01 A A AD3] A4l AB] A6 AL7T)
‘14‘18‘20‘22‘24‘32‘ ‘34‘

A[0] A[1] A[2] A[3] A[4] A[5] A[6] AT

A[7]
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Fancy Sorting: Merge Sort

The standard merge sort copies the array at every step. This is super
slow! We can do better.

C T T T T T T T T T T T T T T T 1
I\./I\/I\/I\/I\/I\/I\/I\/
\ L \ L \ L \ L
[ | | | |
\ / \ /

l ] ]
\ /

l copy if needed

In this version, we allocate a single auxiliary array and swap between it
and the original on each stage.

This is easier iteratively!

11



Fancy Sorting: Merge Sort (Linked Lists & Big Data) 12

In general, we've been sorting with arrays, but what about linked lists?

An Approach

m Convert to an array (O(n))

m Sort (O(nlg(n)))
m Convert to a list (O(n))

But, we can actually do merge sort directly on a list! (This is not true
for heapsort or quicksort!)

Mergesort is also a good choice for external sorting, because the linear
merges minimize disk accesses.



Fancy Sorting: Quick Sort

AT

choose pivot @ ®) recursively sort @ - - <E>
—_—— = ?

L and R sorted sorted

Algorithm

sort(A) { Runtime and Analysis
if (A.length < 2) { Best Case?

return A;
} Average Case?

Worst Case?
In-Place?
Stable?

pivot = choosePivot(A);

left = sort(getLess(A, pivot));
right = sort(getGreater(A, pivot));
return left + pivot + right;

LW ~NOOU,WNH
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Fancy Sorting: Quick Sort

e -
12 8
10 6
1 7

Partition based on pivot = 9

(.

Recursively Sort Halves

[(1T2]3]6]7]8] (9 [Lo]12]14]

L[0] L[1] L[2] L[3] L[4] L[5] R[0] R[1] R[2]

—_
~
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Fancy Sorting: Quick Sort

[20 [50 [ 70 [ 10 [ 60 [ 40 | 30 |
A[0] A[1) AL2) A[3] Al4] A[5] Al6]
1 Choose Pivot
PN [ 50 [ 70 [ 10 [ 60 [ 40 [ 30 |
A[0] A1) A[2] A3] Al4] A[5] A[6]
41! \
[50 [ 70 [ 60 | 40 [ 30 |
& AL0] ALl AL2] AL3] Al4]

1 Choose Pivot

Bl (70]60]%[3%]

A[0] A[1] A[2] A[3] A[4]

/ \l

A[0] A[1] A[0] A[1]

| Choose Pivot Choose Pivot

AL0] A[1] Af0] A1)

Ve
[60 ]

AL0] AL0]




Fancy Sorting: Quick Sort

[20 [50 [ 70 [ 10 [ 60 [ 40 | 30 |
A[0] A[1) AL2) A[3] Al4] A[5] Al6]
1 Choose Pivot
PN [ 50 [ 70 [ 10 [ 60 [ 40 [ 30 |
A[0] A1) A[2] A3] Al4] A[5] A[6]
41! \
[50 [ 70 [ 60 | 40 [ 30 |
& AL0] ALl AL2] AL3] Al4]

1 Choose Pivot

Bl (70]60]%[3%]

A[0] A[1] A[2] A[3] A[4]

/ \l

A[0] A[1] A[0] A[1]

| Choose Pivot Choose Pivot

AL0] A[1] Af0] A1)

Ve
[60 ]

AL0] AL0]




Fancy Sorting: Quick Sort

[50 [ 70 [ 10 [ 60 | 40 | 30 |

A[0] Al1] A[2] A[3] A[4] A[5) Al6]
— ~
SN [70]60[40]30]
A[0] A[f0] A[1] AL2] A[3] AL4]
v S
L\ L\

o

EEE [60 ] 70]

A[0] A[1] AL0] Al1]

17



Fancy Sorting: Quick Sort

[50 [ 70 [ 10 [ 60 | 40 | 30 |

] Al1] Af2] A[3] A[4] A[5) AL6]
C5 BROICIEIED
Al0] Ay)] Al1] Ar2] A[3] Ar4]

e ~
lgg&\lﬂll BN [60]

Al1] AQ] AL1]
a) A\
30 60
A[0] AL0]
[30 ] 40 | [60 ] 70]
AL0] All] A[0] Al1]

‘\30\40\50\60\70\

A[0] Al1) Al2] AL3] A[4]




Fancy Sorting: Quick Sort

[50 [70 [ 10 [ 60 | 40 | 30 |
A[O]‘ A[] A[2) A[3] AL4] A[5] AL6]

L— ~

@ 70 [ 60 | 40 ] 30 |

Al A[3] A[4]
~

A\O] A1) A[2]

e

AN] ALL AN] Al1]
) 2\

30 60
A[0] A[0]
%0 [ 40
»I{OJ A1 AL0] ALl

0]40[50[60]70]

0] AL1] AL2] AL3] Al4]

ﬁ,-s/'“

wﬁ

[10] 2030 ][40 [ 506070 ]

AL0] A[1] AL2] AL3] Al4] A[5] AL6]
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Fancy Sorting: Quick Sort

We now have the general idea of Quick Sort, but there are some
remaining questions:

How do we choose the pivot?

How do we partition the array?

20



QuickSort: Good and Bad Pivots

Best Pivot?
If we had our choice of pivots, which one would we choose?

Median

The median will halve the problem each recursive call.

Worst Pivot?

If an adversary chose our pivot (to make the algorithm take as long as
possible), which one would they choose?

Minimum or Maximum

This will decrease the problem size by only one each recursive call.

21



Pivot Strategies

There are several “standard” strategies to choose a pivot:

L Choose the first/last element of the array

Very fast!
Bad, because real-world data is usually “mostly sorted”

2 Random choice
Generation can be slow
Good, because there's no easy worst case

3 Median of first, middle, and last elements
Works well in practice

22



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

Move pivot to front:

1493 [5[2]7
A[0] Al1] Al2] A[3] Al4] A[5] A[6] AL7] A[8]
[8]1]4J9J0[3[5[]2]7

A[0] Af1] Af2] A[3] Al4] A[5] A[6] AL7]

Move < pivot to the front and > pivot to the end:

A[8]

AL9]

A[9]
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

Move pivot to front:

1493 [5[2]7
A[0] Al1] Al2] A[3] Al4] A[5] A[6] AL7] A[8]
[8]1]4J9J0[3[5[]2]7

A[0] Af1] Af2] A[3] Al4] A[5] A[6] AL7]

Move < pivot to the front and > pivot to the end:

A[8]

AL9]

A[9]

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]9J0]3][5]2]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]9J0]3][5]2]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

1<6 8>6
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]9J0]3][5]2]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

4<6 7>6

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]9J0]3][5]2]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2]0]3][5[]0]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

swap
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2]0]3][5[]0]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

2<6 9>6
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2]0]3][5[]0]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] AL6] AL7] A[8] AL9]

0<6

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2]0]3][5[]0]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] AL6] AL7] A[8] AL9]

3<6

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofo0[3[]5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2]0]3][5[]0]7]8]

Af0] Af1] Af2] A[3] Al4] A[5] AL6] AL7] A[8] AL9]

5<6
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Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8] 1]4]9]0]3][5]2]7

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[T] A[8] A[9]

Move < pivot to the front and > pivot to the end:

1]4]2Jo0o]3]5]9]7]s8

Af0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

23



Partitioning with Median-Of-Three Pivot

Choose a pivot as the median of 1o, mid, and hi:

1493 [5[2]7

A[0] Af1] Af2] A[3] Al4] A[5] Af6] AL7] A[8] AL9]

Move pivot to front:

(8]1]4]ofof3[5[]2]7

A[0] Al1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Move < pivot to the front and > pivot to the end:

L[4]2]0[3]5]9[7]8]

A[0] Al1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Put pivot in middle:

(5 [1]4]2[0[3 MM O[7]8]

A[0] A[1] Af2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

23



QuickSort Analysis

Best Case

The best case is that the pivot is always the median. Then, we get two
recursive calls each of size n/2.

T(n) = 2T (n/2)+n ifn> 1-
1 otherwise

So, the best case behavior is O(nlg(n)).

Worst Case

The worst case is that the pivot is always the minimum or the
maximum. Then, we get one recursive call of size n—1.

T(n) = T(n-1)+n ifn> 1.
1 otherwise

So, the worst case behavior is O(n?).

Average Case

With a random pivot, on average we get O(nlg(n)) behavior.




