
Adam Blank Winter 2016Lecture 4

CSE
332

Data Abstractions



CSE 332: Data Abstractions

Heaps



Outline

1 Reviewing Heap Representation

2 Heap Operations, Again

3 buildHeap



A New Data Structure: Heap 1

PriorityQueue ADT

insert(val) Adds val to the queue.
deleteMin() Returns the highest priority item not already returned by

a deleteMin. (Errors if empty.)
findMin() Returns the highest priority item not already returned by

a deleteMin. (Errors if empty.)
isEmpty() Returns true if all inserted elements have been returned by

a deleteMin.

Heaps give us O(lgn) insert and deleteMin:

And Now, Heaps

2

4

5

6 8

3

7

10 9

Heap Property:
All Children are larger

Structure Property:
Insist the tree has no “gaps”



And. . . how do we implement Heap? 2

We’ve insisted that the tree be complete to be a valid Heap. Why?

A
0

B
1

D
3

H
7

I
8

E
4

J
9

K
10

C
2

F
5

L
11

G
6

Fill in an array in level-order of the tree:
heap: A B C D E F G H I J K L 0 0 0

h[0] h[1] h[2] h[3] h[4] h[5] h[6] h[7] h[8] h[9] h[10] h[11] h[12] h[13] h[14]

parent(n) = (n − 1) / 2
leftChild(n) = 2n + 1
rightChild(n) = 2n + 2



insert Psuedocode 3

1 void insert(val) {
2 if (size == arr.length − 1) {
3 resize();
4 }
5
6 arr[size] = val;
7 percolateUp(size);
8 size++;
9 }

1 void percolateUp(hole) {
2 while (hole > 0 && arr[hole] < arr[parent(hole)]) {
3 swap(hole, parent(hole));
4 hole = parent(hole);
5 }
6 }

Insert 2 into this Heap

10

20

30

40 32

35

25

50 33
ÐÐÐÐÐ→

2

10

30

40 32

20

35

25

50 33

Before: 10 20 25 30 35 50 33 40 32 0 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]

After: 2 10 25 30 20 50 33 40 32 35 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]



insert Psuedocode 3

1 void insert(val) {
2 if (size == arr.length − 1) {
3 resize();
4 }
5
6 arr[size] = val;
7 percolateUp(size);
8 size++;
9 }

1 void percolateUp(hole) {
2 while (hole > 0 && arr[hole] < arr[parent(hole)]) {
3 swap(hole, parent(hole));
4 hole = parent(hole);
5 }
6 }

Insert 2 into this Heap

10

20

30

40 32

35

25

50 33
ÐÐÐÐÐ→

2

10

30

40 32

20

35

25

50 33

Before: 10 20 25 30 35 50 33 40 32 0 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]

After: 2 10 25 30 20 50 33 40 32 35 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]



deleteMin Psuedocode 4

1 int deleteMin() {
2 if (isEmpty()) {
3 throw . . .;
4 }
5 ans = arr[0];
6 arr[0] = arr[size − 1];
7 size−−;
8 percolateDown(0);
9 return ans;

10 }

1 void percolateDown(bad) {
2 target = getSmallestChild(bad);
3 while (arr[target] < arr[bad]) {
4 swap(bad, target);
5 bad = target;
6 target = getSmallestChild(bad);
7 }
8 }

Delete Min
2

10

30

40 32

20

35

25

50 33
ÐÐÐÐÐ→

10

20

30

40 32

35

25

50 33

Before: 2 10 25 30 20 50 33 40 32 35 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]

After: 10 20 25 30 35 50 33 40 32 0 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]



deleteMin Psuedocode 4

1 int deleteMin() {
2 if (isEmpty()) {
3 throw . . .;
4 }
5 ans = arr[0];
6 arr[0] = arr[size − 1];
7 size−−;
8 percolateDown(0);
9 return ans;

10 }

1 void percolateDown(bad) {
2 target = getSmallestChild(bad);
3 while (arr[target] < arr[bad]) {
4 swap(bad, target);
5 bad = target;
6 target = getSmallestChild(bad);
7 }
8 }

Delete Min
2

10

30

40 32

20

35

25

50 33
ÐÐÐÐÐ→

10

20

30

40 32

35

25

50 33

Before: 2 10 25 30 20 50 33 40 32 35 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]

After: 10 20 25 30 35 50 33 40 32 0 0 0
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] heap[7] heap[8] heap[9] heap[10] heap[11]



insert Runtime 5

We know insert is O(lgn), but. . .

Just like with BSTs, the order of insertion makes a big difference.

With randomly ordered inputs, we have:
an average of 2.6 comparisons per insert
an element moves up 1.6 levels on average

Unfortunately, we’re not so lucky on deleteMin; we usually have to
percolate all the way down.



Analyzing insert’s Average Case 6

Suppose a heap has n nodes.
How many nodes on the bottom level? n

2

And the level above? n
4

etc.
Suppose we have a random value, x, in the heap.

How often is x in the bottom level? 1
2 of the time

And the level above? 1
4 of the time

etc.
So, putting these things together, we see that for a random value x,
there’s a 1

2 probability we compare once, a 1
4 probability we compare

twice, etc.
Taking a weighted average (expected value) gives us:

Average # of Compares < 1
2
+ 2

4
+ 3

8
+⋅ ⋅ ⋅ =

∞

∑
i=0

i
2i = 2

This is O(1)!



Evaluating the Array Implementation 7

Advantages
Minimal amount of wasted space:

Only unused space on right in the array
No “holes” due to complete tree property
No wasted space representing tree edges

Fast lookups:
Benefit of array lookup speed
Multiplying and dividing by 2 is extremely fast (can be done through
bit shifting (see CSE 351)
Last used position is easily found by using size - 1 for the index

Disadvantages
What if the array gets too full (or wastes space by being too empty)?
Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!



Changing the ADT. . . 8

What else can we do with a heap?
Given a particular index i into the array. . .

decreaseKey(i, newPriority): Change priority, percolate up

increaseKey(i, newPriority): Change priority, percolate down

remove(i): Call decreaseKey(i, −∞), then deleteMin

What are the running times of these operations?

They’re all worst case O(lgn), but decreaseKey is average O(1).



Building a Heap 9

The Easy Way. . .
1 void buildHeap(int[] input) {
2 for (int i = 0; i < input.length; i++) {
3 insert(input[i]);
4 }
5 }

What is the time complexity of buildHeap?
The worst case is O(n lgn).

Can we do better?
With our current ADT, no! But if we have access to the internals of the
data structure, we can.
In other words, if we add a new operation to the ADT, then we can
do better.

This is a trade-off: convenience, efficiency, simplicity



Building a Heap, Take 2 10

Floyd’s buildHeap Idea
Our previous attempt added a node, then fixed the heap, then added a
node, then fixed the heap, etc.
What if we added all the nodes and then fixed the heap all at once!

Floyd’s buildHeap
Each highlighted node is a valid heap!

12

5

3

4 8

10

1 7

11

2

6

9

next levelÐÐÐ→

Percolate down red nodes until at top
12

5

3

4 8

10

1 7

11

2

6

9

perc down redsÐÐÐÐÐ→

Each color represents a valid heap
12

5

3

4 8

1

10 7

11

2

6

9

next levelÐÐÐ→

12

1

3

4 8

5

10 7

2

6

11

9

next levelÐÐÐ→

1

3

4

12 8

5

10 7

2

6

11

9



Floyd’s buildHeap 11

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

The last row begins valid

22

33

4

3 8

5

12 1

10

6

11

90

Ð→

Now, we begin percolating down

22

33

4

3 8

5

12 1

10

6

11

90



Floyd’s buildHeap 12

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(6)

22

33

4

3 8

5

12 1

10

6

11

90

Ð→

No changes to make!

22

33

4

3 8

5

12 1

10

6

11

90



Floyd’s buildHeap 13

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(5)

22

33

4

3 8

5

12 1

10

6

11

90

Ð→

No changes to make!

22

33

4

3 8

5

12 1

10

6

11

90



Floyd’s buildHeap 14

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(4)

22

33

4

3 8

5

12 1

10

6

11

90

Ð→

Swap 5 and 1

22

33

4

3 8

1

12 5

10

6

11

90



Floyd’s buildHeap 15

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(3)

22

33

4

3 8

1

12 5

10

6

11

90

Ð→

Swap 4 and 3

22

33

3

4 8

1

12 5

10

6

11

90



Floyd’s buildHeap 16

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(2)

22

33

3

4 8

1

12 5

10

6

11

90

Ð→

Swap 10 and 6

22

33

3

4 8

1

12 5

6

10

11

90



Floyd’s buildHeap 17

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(1)

22

33

3

4 8

1

12 5

6

10

11

90

Ð→

Swap 33↔ 1, then swap 33↔ 5

22

1

3

4 8

5

12 33

6

10

11

90



Floyd’s buildHeap 18

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

percolateDown(0)

22

1

3

4 8

5

12 33

6

10

11

90

Ð→

22↔ 1, 22↔ 3, 22↔ 4

1

3

4

22 8

5

12 33

6

10

11

90



Correctness of Floyd’s buildHeap 19

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

The algorithm seems to work. Let’s prove it:
To prove that it works, we’ll prove the following:

Before loop iteration i, all arr[j] where j > n/2− i have the heap
property

Formally, we’d do this by induction. Here’s a sketch of the proof:
Base Case:

All j > (size + 1) / 2 have no children.

Induction Step:

We know that percolateDown preserves the heap property and
makes its argument also have the heap property. So, after the (i+1)st
iteration, we know i is less than all its children and by the IH, we know
that all of the children past arr[i] already had the heap property
(and percolateDown didn’t break it).

So, since the loop ends with index 0, once we’re done all the elements of
the array will have the heap property.



Correctness of Floyd’s buildHeap 19

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

The algorithm seems to work. Let’s prove it:
To prove that it works, we’ll prove the following:

Before loop iteration i, all arr[j] where j > n/2− i have the heap
property

Formally, we’d do this by induction. Here’s a sketch of the proof:
Base Case:

All j > (size + 1) / 2 have no children.

Induction Step:

We know that percolateDown preserves the heap property and
makes its argument also have the heap property. So, after the (i+1)st
iteration, we know i is less than all its children and by the IH, we know
that all of the children past arr[i] already had the heap property
(and percolateDown didn’t break it).

So, since the loop ends with index 0, once we’re done all the elements of
the array will have the heap property.



Correctness of Floyd’s buildHeap 19

1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

The algorithm seems to work. Let’s prove it:
To prove that it works, we’ll prove the following:

Before loop iteration i, all arr[j] where j > n/2− i have the heap
property

Formally, we’d do this by induction. Here’s a sketch of the proof:
Base Case: All j > (size + 1) / 2 have no children.
Induction Step:
We know that percolateDown preserves the heap property and
makes its argument also have the heap property. So, after the (i+1)st
iteration, we know i is less than all its children and by the IH, we know
that all of the children past arr[i] already had the heap property
(and percolateDown didn’t break it).

So, since the loop ends with index 0, once we’re done all the elements of
the array will have the heap property.



Efficiency of Floyd’s buildHeap 20

1 void buildHeap(int[] input) {
2 for (i = (size − 1)/2; i >= 0; i−−) {
3 percolateDown(i);
4 }
5 }

Was this even worth the effort?
The loop runs n/2 iterations and each one is O(lgn); so, the algorithm is
O(n lgn).

This is certainly true, but it’s not Ω(n lgn). . .

A Tighter Analysis
On the second lowest level there are n

22 elements and each one can
percolate at most 1 time
On the third lowest level there are n

23 elements and each one can
percolate at most 2 times
. . .

Putting this together, the largest possible number of swaps is:
k

∑
i=1

ni
2i+1 <

n
2
(
∞

∑
i=1

i
2i ) =

2n
2
= n



Takeaways from buildHeap 21

ADT?
Without buildHeap, our ADT already let clients implement their
own in Ω(n lgn) worst case
By providing a specialized operation internally (with access to the
data structure), we can do O(n) worst case

Our Analyses!
Correctness: Non-trivial inductive proof using loop invariant
Efficiency:

First analysis easily proved it was O(n lgn)
A tighter analysis shows the same algorithm is O(n)



Other Types of Heaps? 22

More Complicated Heaps
Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
Different data structures for priority queues that support a
logarithmic time merge operation (impossible with binary heaps)
Intuition: We already saw merge for the amortized array dictionary
insert & deleteMin defined in terms of merge

d-heaps
We can have heaps with d children instead of just 2 (see Weiss 6.5)

Makes heaps shallower, useful for heaps too big for memory
How does this affect the asymptotic run-time (for small d’s)?


	Reviewing Heap Representation
	Heap Operations, Again
	buildHeap

