

Data Abstractions

CSE 332: Data Abstractions

Heaps

Outline

1 Reviewing Heap Representation

2 Heap Operations, Again

3 buildHeap

PriorityQueue ADT

insert(val)	Adds val to the queue.
deleteMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)
findMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a deleteMin.

Heaps give us $\mathcal{O}(\lg n)$ insert and deleteMin:
And Now, Heaps

Heap Property:

All Children are larger
Structure Property:
Insist the tree has no "gaps"

And. . . how do we implement Heap?

We've insisted that the tree be complete to be a valid Heap. Why?

Fill in an array in level-order of the tree:
heap:


```
parent(n) = (n - 1) / 2
leftChild(n) = 2n + 1
rightChild(n) = 2n + 2
```


insert Psuedocode

1 void insert(val) \{
if (size == arr.length - 1) \{ resize(); \}
arr[size] = val;
percolateUp(size);
size++;

```
1 void percolateUp(hole) {
    while (hole > 0 && arr[hole] < arr[parent(hole)]) {
        swap(hole, parent(hole));
        hole = parent(hole);
    }
}
```


Insert 2 into this Heap

Before: | 10 | 20 | 25 | 30 | 35 | 50 | 33 | 40 | 32 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| heapp[0] | heapp $[1]$ | heap $[2]$ | heapp $[3]$ | heapp $[4]$ | heapp[5] | heapp[6] | heap[$[7]$ | heapp $[8]$ | heapp $[9]$ | heap $[10]$ | heapp[11] |

insert Psuedocode

```
void insert(val) {
    if (size == arr.length - 1) {
        resize();
    }
    arr[size] = val;
    percolateUp(size);
    size++;
```

1 void percolateUp(hole) \{
while (hole > 0 \&\& arr[hole] < arr[parent(hole)]) \{
swap(hole, parent(hole));
hole = parent(hole);
\}
\}

Insert 2 into this Heap

Before:

10	20	25	30	35	50	33	40	32	0	0	0
heapp[0]	heapp[1]	heapp[2]	heap [3]	heapp [4]	heap $[5]$	heapp $[6]$	heap $[7]$	heap $[8]$	heapp $[9]$	heapp[10]	heapp $[1]]$

After:

2	10	25	30	20	50	33	40	32	35	0	0

deleteMin Psuedocode

```
int deleteMin() {
        if (isEmpty()) {
            throw ...;
        }
        ans = arr[0];
        arr[0] = arr[size - 1];
        size--;
        percolateDown(0);
        return ans;
}
```


Delete Min

Before:

2	10	25	30	20	50	33	40	32	35	0	0
			heap [3]				heap[7]			heap 10	heap [11]

deleteMin Psuedocode

```
int deleteMin() {
        if (isEmpty()) {
            throw ...;
        }
        ans = arr[0];
        arr[0] = arr[size - 1];
        size--;
        percolateDown(0);
        return ans;
}
```


Delete Min

Before:

2	10	25	30	20	50	33	40	32	35	0	0
heapp[0]	[eap [1]	hoap [2]	heap [3]	heap[4]	heap[5]	heap[6]	heap[7]	heap [8]	heap [9]	heap [10]	heap[1]

After:

10	20	25	30	35	50	33	40	32	0	0	0
heapp[0]	heap [1]	heap [2]	heap [3]	heap [4]	Reap [5]	heap [6]	heap [7]	${ }_{\text {beap }}{ }^{\text {8] }}$	heap	Sap[10	apt

We know insert is $\mathcal{O}(\lg n)$, but. . .
Just like with BSTs, the order of insertion makes a big difference.

With randomly ordered inputs, we have:

- an average of 2.6 comparisons per insert
- an element moves up 1.6 levels on average

Unfortunately, we're not so lucky on deleteMin; we usually have to percolate all the way down.

Analyzing insert's Average Case

Suppose a heap has n nodes.
How many nodes on the bottom level? $\frac{n}{2}$

- And the level above? $\frac{n}{4}$
etc.
Suppose we have a random value, x, in the heap.
How often is x in the bottom level? $\frac{1}{2}$ of the time
- And the level above? $\frac{1}{4}$ of the time
- etc.

So, putting these things together, we see that for a random value x, there's a $\frac{1}{2}$ probability we compare once, a $\frac{1}{4}$ probability we compare twice, etc.
Taking a weighted average (expected value) gives us:

$$
\text { Average \# of Compares }<\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\cdots=\sum_{i=0}^{\infty} \frac{i}{2^{i}}=2
$$

This is $\mathcal{O}(1)$!

Advantages

Minimal amount of wasted space:

- Only unused space on right in the array
- No "holes" due to complete tree property
- No wasted space representing tree edges

Fast lookups:

- Benefit of array lookup speed
- Multiplying and dividing by 2 is extremely fast (can be done through bit shifting (see CSE 351)
- Last used position is easily found by using size - 1 for the index

Disadvantages

What if the array gets too full (or wastes space by being too empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

What else can we do with a heap?
Given a particular index i into the array...

- decreaseKey(i, newPriority): Change priority, percolate up
- increaseKey(i, newPriority): Change priority, percolate down
- remove(i): Call decreaseKey(i, $-\infty$), then deleteMin

What are the running times of these operations?
They're all worst case $\mathcal{O}(\lg n)$, but decreaseKey is average $\mathcal{O}(1)$.

The Easy Way. . .

```
void buildHeap(int[] input) {
    for (int i = 0; i < input.length; i++) {
        insert(input[i]);
    }
}
```


What is the time complexity of buildHeap?

The worst case is $\mathcal{O}(n \lg n)$.

Can we do better?
With our current ADT, no! But if we have access to the internals of the data structure, we can.
In other words, if we add a new operation to the ADT, then we can do better.

This is a trade-off: convenience, efficiency, simplicity

Floyd's buildHeap Idea
Our previous attempt added a node, then fixed the heap, then added a node, then fixed the heap, etc.
What if we added all the nodes and then fixed the heap all at once!
Floyd's buildHeap
Each highlighted node is a valid heap! Percolate down red nodes until at top

Each color represents a valid heap


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

The last row begins valid

Now, we begin percolating down


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(6)

No changes to make!


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(5)

No changes to make!


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(4)

Swap 5 and 1


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(3)

Swap 4 and 3


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(2)

Swap 10 and 6


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(1)

Swap $33 \leftrightarrow 1$, then swap $33 \leftrightarrow 5$


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4 }
5 }
```

percolateDown(0)

$22 \leftrightarrow 1,22 \leftrightarrow 3,22 \leftrightarrow 4$


```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4
5 }
```

The algorithm seems to work. Let's prove it:
To prove that it works, we'll prove the following:
Before loop iteration i, all arr $[j]$ where $j>n / 2-i$ have the heap property

Formally, we'd do this by induction. Here's a sketch of the proof:

- Base Case:
- Induction Step:

So, since the loop ends with index 0 , once we're done all the elements of the array will have the heap property.

```
1 void buildHeap(int[] input) {
2 for (i = (size + 1)/2; i >= 0; i--) {
3 percolateDown(i);
4
5 }
```

The algorithm seems to work. Let's prove it:
To prove that it works, we'll prove the following:
Before loop iteration i, all arr $[j]$ where $j>n / 2-i$ have the heap property

Formally, we'd do this by induction. Here's a sketch of the proof:

- Base Case:
- Induction Step:

So, since the loop ends with index 0 , once we're done all the elements of the array will have the heap property.

```
void buildHeap(int[] input) {
    for (i = (size + 1)/2; i >= 0; i--) {
        percolateDown(i);
    }
}
```

The algorithm seems to work. Let's prove it:
To prove that it works, we'll prove the following:
Before loop iteration i, all $\operatorname{arr}[j]$ where $j>n / 2-i$ have the heap property

Formally, we'd do this by induction. Here's a sketch of the proof:

- Base Case: All $j>($ size +1$) / 2$ have no children.
- Induction Step:

We know that percolateDown preserves the heap property and makes its argument also have the heap property. So, after the $(i+1)$ st iteration, we know i is less than all its children and by the IH, we know that all of the children past arr [i] already had the heap property (and percolateDown didn't break it).
So, since the loop ends with index 0 , once we're done all the elements of the array will have the heap property.

```
1 void buildHeap(int[] input) {
2 for (i = (size - 1)/2; i >= 0; i--) {
        percolateDown(i);
    }
}
```

Was this even worth the effort?
The loop runs $n / 2$ iterations and each one is $\mathcal{O}(\lg n)$; so, the algorithm is $\mathcal{O}(n \lg n)$.

This is certainly true, but it's not $\Omega(n \lg n)$...
A Tighter Analysis

- On the second lowest level there are $\frac{n}{2^{2}}$ elements and each one can percolate at most 1 time
- On the third lowest level there are $\frac{n}{2^{3}}$ elements and each one can percolate at most 2 times

Putting this together, the largest possible number of swaps is:

$$
\sum_{i=1}^{k} \frac{n i}{2^{i+1}}<\frac{n}{2}\left(\sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)=\frac{2 n}{2}=n
$$

Takeaways from buildHeap

ADT?

- Without buildHeap, our ADT already let clients implement their own in $\Omega(n \lg n)$ worst case
- By providing a specialized operation internally (with access to the data structure), we can do $\mathcal{O}(n)$ worst case

Our Analyses!

- Correctness: Non-trivial inductive proof using loop invariant
- Efficiency:
- First analysis easily proved it was $\mathcal{O}(n \lg n)$
- A tighter analysis shows the same algorithm is $\mathcal{O}(n)$

More Complicated Heaps

- Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
- Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
- Intuition: We already saw merge for the amortized array dictionary
- insert \& deleteMin defined in terms of merge
d-heaps
We can have heaps with d children instead of just 2 (see Weiss 6.5)
- Makes heaps shallower, useful for heaps too big for memory
- How does this affect the asymptotic run-time (for small d 's)?

