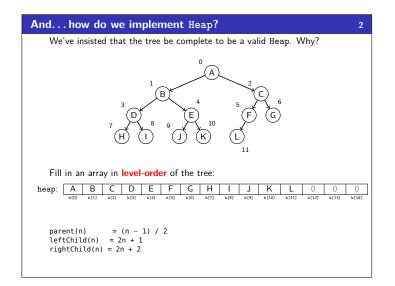
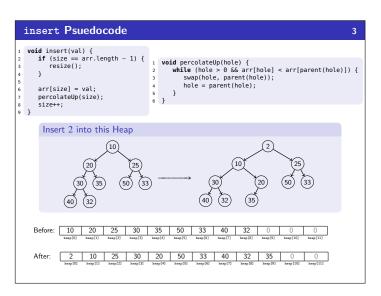
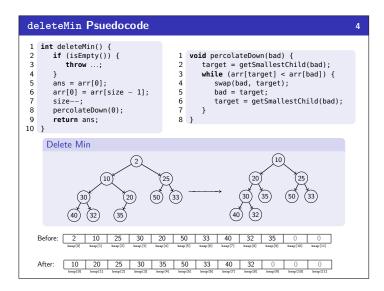


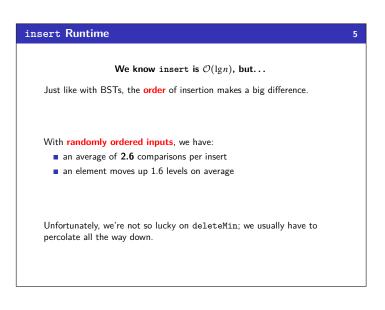
en Data St	r <u>ucture</u> : Heap	1
PriorityQueue	ADT	
<pre>insert(val)</pre>	Adds val to the queue.	
deleteMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)	
findMin()	Returns the highest priority item not already returned by a deleteMin. (Errors if empty.)	
isEmpty()	Returns true if all inserted elements have been returned by a deleteMin.	
leaps give us ${\cal C}$ and Now, Heaps	O(lgn) insert and deleteMin:	

(6) (8)









Analyzing insert's Ave

Suppose a heap has n nodes.

- How many nodes on the bottom level? $\frac{n}{2}$
- And the level above? $\frac{n}{4}$
- etc.

Suppose we have a random value, x, in the heap.

- How often is x in the bottom level? $\frac{1}{2}$ of the time
- And the level above? $\frac{1}{4}$ of the time
- etc.

So, putting these things together, we see that for a random value x, there's a $\frac{1}{2}$ probability we compare once, a $\frac{1}{4}$ probability we compare twice, etc.

Taking a weighted average (expected value) gives us:

age # of Compares
$$< \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots = \sum_{i=0}^{\infty} \frac{i}{2^i} = 2$$

This is $\mathcal{O}(1)!$

Aver

Changing the ADT...

What else can we do with a heap?

Given a particular index i into the array...

- decreaseKey(i, newPriority): Change priority, percolate up
- increaseKey(i, newPriority): Change priority, percolate down
- **\square** remove(i): Call decreaseKey(i, $-\infty$), then deleteMin

What are the running times of these operations?

They're all worst case $\mathcal{O}(\lg n)$, but decreaseKey is **average** $\mathcal{O}(1)$.

Evaluating the Array Implementation

Advantages

6

8

Minimal amount of wasted space:

- Only unused space on right in the array
- No "holes" due to complete tree property
- No wasted space representing tree edges
- Fast lookups:
- Benefit of array lookup speed
- Multiplying and dividing by 2 is extremely fast (can be done through bit shifting (see CSE 351)
- Last used position is easily found by using size 1 for the index

Disadvantages

What if the array gets too full (or wastes space by being too empty)? Array will have to be resized.

Advantages outweigh Disadvantages: This is how it is done!

Building a Heap	9
<pre>The Easy Way 1 void buildHeap(int[] input) { 2 for (int i = 0; i < input.length; i++) { 3 insert(input[i]); 4 } 5 }</pre>	
What is the time complexity of buildHeap? The worst case is $O(n \lg n)$.	
Can we do better?	
With our current ADT, no! But if we have access to the internals of th data structure, we can. In other words, if we add a new operation to the ADT , then we can do better.	e
This is a trade-off: convenience, efficiency, simplicity	

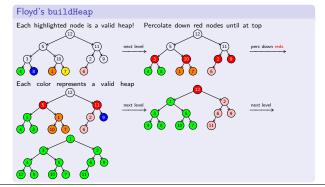
Building a Heap, Take 2

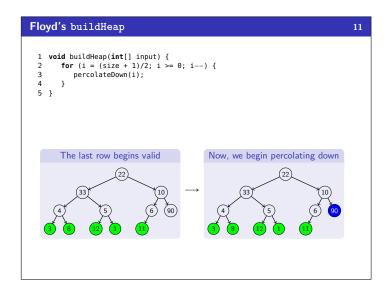
Floyd's buildHeap Idea

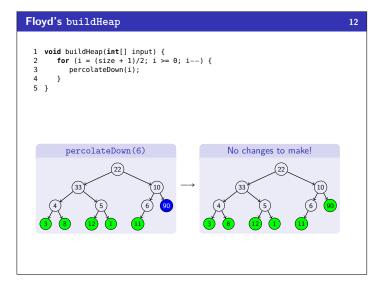
Our previous attempt added a node, then fixed the heap, then added a node, then fixed the heap, etc.

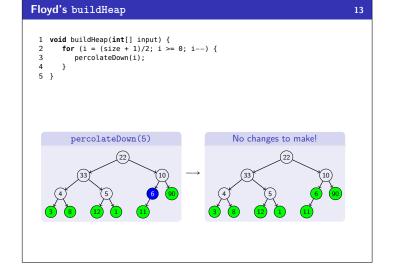
10

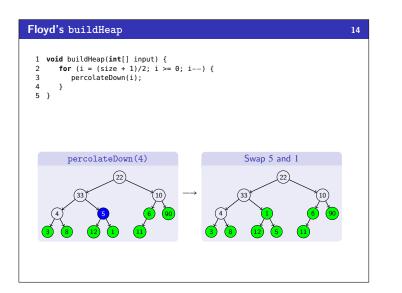
What if we added all the nodes and then fixed the heap all at once!

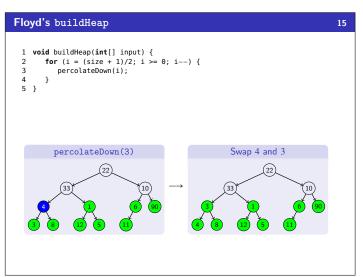


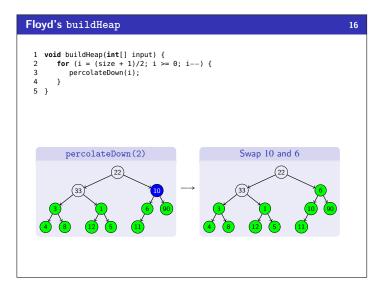


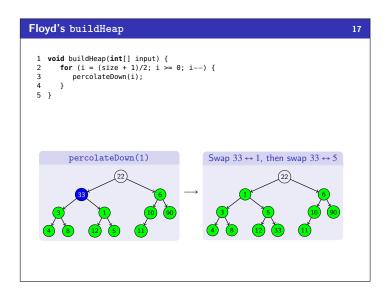


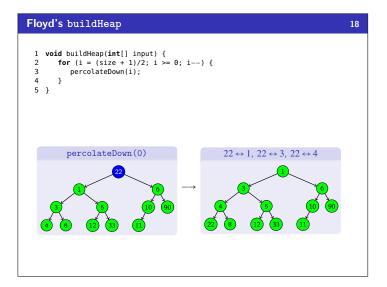






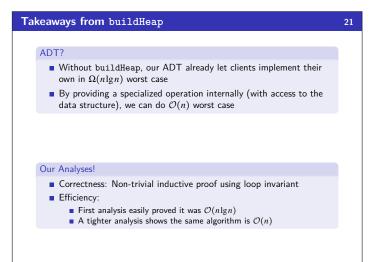






Eff	iciency of Floyd's buildHeap	20
1 2 3 4 5	<pre>void buildHeap(int[] input) { for (i = (size - 1)/2; i >= 0; i) { percolateDown(i); } }</pre>	
	Was this even worth the effort?	
	The loop runs $n/2$ iterations and each one is $\mathcal{O}(\lg n);$ so, the algorithm is $\mathcal{O}(n\lg n).$	
	This is certainly true, but it's not $\Omega(n \lg n)$	
	A Tighter Analysis	
	\blacksquare On the second lowest level there are $\frac{n}{2^2}$ elements and each one can percolate ${\bf at\ most}\ 1$ time	
	• On the third lowest level there are $\frac{n}{2^3}$ elements and each one can percolate at most 2 times	
	Putting this together, the largest possible number of swaps is :	
	$\sum_{i=1}^{k} \frac{ni}{2^{i+1}} < \frac{n}{2} \left(\sum_{i=1}^{\infty} \frac{i}{2^{i}} \right) = \frac{2n}{2} = n$	

Correctness of Floyd's buildHeap	19
<pre>1 void buildHeap(int[] input) { 2 for (i = (size + 1)/2; i >= 0; i) { 3 percolateDown(i); 4 } 5 }</pre>	
The algorithm seems to work. Let's prove it : To prove that it works, we'll prove the following:	
Before loop iteration i , all arr[j] where $j > n/2 - i$ have the heap property	
Formally, we'd do this by induction. Here's a sketch of the proof:	
 Base Case: All j > (size + 1) / 2 have no children. Induction Step: 	
We know that percolateDown preserves the heap property an makes its argument also have the heap property. So, after the $(i+1)$ s iteration, we know <i>i</i> is less than all its children and by the IH, we know that all of the children past arr[i] already had the heap propert (and percolateDown didn't break it).	t v
So, since the loop ends with index 0, once we're done all the elements o the array will have the heap property.	



Other Types of Heaps?

22

More Complicated Heaps

- Leftist heaps, skew heaps, binomial queues (Weiss 6.6-6.8)
- Different data structures for priority queues that support a logarithmic time merge operation (impossible with binary heaps)
- Intuition: We already saw merge for the amortized array dictionary
- insert & deleteMin defined in terms of merge

d-heaps

We can have heaps with d children instead of just 2 (see Weiss 6.5)

- Makes heaps shallower, useful for heaps too big for memory
- How does this affect the asymptotic run-time (for small *d*'s)?