
Adam Blank Winter 2016Lecture 17

CSE332
Data Abstractions

CSE 332: Data Abstractions

P3

Synchronization 1

P3 out today!

Make your groups today!

Decide on several weekly meeting times!

The exercises due today will help you with P3!

Tic-Tac-Toe 2

O X O

X

X O
No matter what happens at this point, it’s a draw.

Solving Tic-Tac-Toe 3

1 // Let’s assume I’m X
2 win(Board b) {
3 if (O can win on the next move) {
4 block it
5 }
6 else if (the center square is open) {
7 take it
8 }
9 else if (a corner square is open) {

10 take it
11 }
12 else if (...) {
13 ...
14 }
15 }

Do We Really Want To Do This?
Difficult to code
Different for every game
How do we even know we’re right?
Way too much thinking–that’s what computers are for!

Recursion To The Rescue 4

1 boolean win(Board b) {
2 if (b.threeXs()) {
3 return true;
4 }
5 else {
6 for (Move m : every possible move) {
7 if (win(b.do(move))) {
8 return true;
9 }

10 }
11 return false;
12 }

There’s An Issue Here!
When we make a move, it’s not our turn any more.
So the recursive call should be to our opponent’s option
Key Insight: Instead of guessing what the opponent is going to do,
assume she plays optimally!



win:lose::me:you 5

1 // +1 is a win; +0 is a draw; −1 is a loss
2 int eval(Board b) {
3 if (b.gameOver()) {
4 if (b.hasThree(me)) {
5 return 1;
6 }
7 else if (b.hasThree(them)) {
8 return −1;
9 }

10 else {
11 return 0;
12 }
13 }
14 else {
15 int best = −1;
16 for (Move m : every possible move) {
17 best = max(best, −eval(b.apply(move)));
18 }
19 return best;
20 }

A Game of Tic-Tac-Toe 6

X O X

O O

X

X O X

X O O

X

X O X

X O O

O X

X O X

X O O

O X X

X O X

X O O

O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

X O X

X O X

O O

X X

X O X

O O O

X X

X O X

O O

O X X

X O X

X O O

O X X

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

A Game of Tic-Tac-Toe: Filling in the Game Tree 7

X O X

O O

X

0

-1 -1 -1 -1

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

A Game of Tic-Tac-Toe: Filling in the Game Tree 8

X O X

O O

X

-1

0

0

-1

-1

-1 -1

-1

-1 0

0

X’s Turn

O’s Turn

X’s Turn

O’s Turn

X must choose one of these moves

An Idea! 9

50

50 60

Y

3 X

Max’s Turn

Min’s Turn

Max’s Turn

To fill in Y , MIN will take min(3,X). So, there are two cases:
4 = X > 3. Then, Y =min(3,4) = 3. So, the box is 50.
2 = X < 3. Then, Y =min(3,2) = 2. So, the box is 50.

The values of X and Y don’t matter! Don’t calculate them!

Pruning 10

40

40

40

30 40

50

50 20

4

4

2 4

35

25 35

2

2

1 2

4

3 4

Max

Min

Max

Min

Do we check the next node?
We currently have no information. So, yes!

Do we check the next node?
The current bounds are [−∞,40]. So, we might do better!

Do we check the next node?
Max will choose x ≥ 50 which is already worse than the 40.

The current bounds are [50,40]. Don’t bother.
Do we check the next node?

Min will choose x ≤ 4 which is already worse than the 40.
The current bounds are [40,4]. Don’t bother.

The algorithm we just ran is called AlphaBeta.
α is the lower bound; β is the upper bound



Parallel Searching 11

P3 combines graph algorithms (more on this later) with parallelism.

You will implement four algorithms:

Minimax (the first one we discussed)

Parallel Minimax

Alpha-Beta Pruning (the second one we discussed)

Jamboree (a parallel alpha-beta)

Each of these four algorithms has their own wrinkles. Each builds on the
last.

Game Trees & Ply 12

A branching factor is how many times a node splits at each level. In
chess, for a random position, the average branching factor is:

35
The average chess game lasts about

40 Moves
If we wanted to evaluate the whole game, we would be evaluating 3540

leaves. If we were able to evaluate 1 trillion leaves a second, we would
need 1048 seconds.

End Game 13

In addition to writing these bots, you’ll get to watch them play.

A demo is worth 1000 words.


