Adam Blank Lecture 17 Winter 2016

335

Data Abstractions

Synchronization 1

m P3 out today!
m Make your groups today!
m Decide on several weekly meeting times!

m The exercises due today will help you with P3!

Solving Tic-Tac-Toe 3

1 // Let’s assume I'm X
2 win(Board b) {

3 if (0 can win on the next move) {
4 block it

5 }

6 else if (the center square is open) {
7 take it

8 }

9 else if (a corner square is open) {
10 take it

11 }

12 else if (...) {

13

14 }

15 }

Do We Really Want To Do This?
m Difficult to code
m Different for every game
m How do we even know we're right?
m Way too much thinking—that's what computers are for!

CSE 332: Data Abstractions

P3

O X |0
X
X |10

No matter what happens at this point, it's a draw.

Recursion To The Rescue 4

1 boolean win(Board b) {

2 if (b.threeXs()) {

3 return true;

4 }

5 else {

6 for (Move m : every possible move) {
7 if (win(b.do(move))) {

8 return true;

9 }
10 }
11 return false;
12 }

There's An Issue Here!
m When we make a move, it's not our turn any more.
m So the recursive call should be to our opponent’s option

m Key Insight: Instead of guessing what the opponent is going to do,
assume she plays optimally!

win:lose::me:you 5

1 // +1 is a win; +0 is a draw; -1 is a loss
2 int eval(Board b) {

3 if (b.gameOver()) {

4 if (b.hasThree(me)) {

5 return 1;

6 }

7 else if (b.hasThree(them)) {

8 return -1;

9 }

10 else {

11 return 0;

12 }

13 }

14 else {

15 int best = -1;

16 for (Move m : every possible move) {
17 best = max(best, [—eval(b.apply(move)));
18 }

19 return best;

20 }

A Game of Tic-Tac-Toe: Filling in the Game Tree

A Game of Tic-Tac-Toe 6

X’s Turn o

0O’s Turn

X’s Turn

O’s Turn

A Game of Tic-Tac-Toe: Filling in the Game Tree

X
X’s Turn oo
X

O’s Turn

X must choose 6ne\of these moves

® @ 6 d

X’s Turn

O’s Turn

An Idea! 9

Max’s Turn

Min’s Turn 50

d % J

To fill in ¥, MIN will take min(3,X). So, there are two cases:
m 4=X>3. Then, Y =min(3,4) =3. So, the box is 50.
m 2=X<3. Then, Y =min(3,2) =2. So, the box is 50.

Max’s Turn

The values of X and Y don’t matter! Don’t calculate them!

X|0|X
X’s Turn oo
O’s Turn il X ot ch /ﬁfm 1
X’s Turn o @ ® @ ® o
O’s Turn O ©
Pruning 10

Do we check the next node?
We currently have no information. So, yes!
Do we check the next node?
The current bounds are [-00,40]. So, we might do better!
Do we check the next node?

Max will choose x> 50 which is already worse than the 40.
The current bounds are [50,40]. Don't bother.
Do we check the next node?
Min will choose x <4 which is already worse than the 40.
The current bounds are [40,4]. Don't bother.

Th 1 HAN HP=S lad AlnhaDRas

Parallel Searching
P3 combines graph algorithms (more on this later) with parallelism.
You will implement four algorithms:
m Minimax (the first one we discussed)
m Parallel Minimax
m Alpha-Beta Pruning (the second one we discussed)

m Jamboree (a parallel alpha-beta)

Each of these four algorithms has their own wrinkles. Each builds on the
last.

11

End Game

In addition to writing these bots, you'll get to watch them play.

A demo is worth 1000 words.

Game Trees & Ply

A branching factor is how many times a node splits at each level. In
chess, for a random position, the average branching factor is:

35

The average chess game lasts about

40 Moves

If we wanted to evaluate the whole game, we would be evaluating 35
leaves. If we were able to evaluate 1 trillion leaves a second, we would
need 10* seconds.

