

CSE 332: Data Abstractions

P vs. NP: Efficient Reductions Between Problems

More Graph Problems	1
Let's consider the longest path problem on a graph.	
Remember, we were able to do shortest paths using Dijkstra's.	
Take a few minutes to try to solve the longest path problem.	

Definition (Decision Problem) A decision problem (or language) is a set of strings $(L \subseteq \Sigma^*)$. An algorithm (from Σ^* to boolean) solves a decision problem when it outputs true iff the input is in the set. PRIMES Input(s): Number x Output: true iff x is prime An Algorithm that solves **PRIMES** isPrime(x) { for (i = 2; i < x; i++) { if (x % i == 0) { </pre> 1 2 3 return false; 5 } 6 7 8 } return true;

Efficient?

In this lecture, we'll be talking about **efficient reductions**. So, naturally, we have to answer two questions:

- What is an efficient algorithm?
- What is a reduction?

Efficient Algorithm

We say an algorithm is ${\it efficient}$ if the worst-case analysis is a ${\it polynomial}.$ Okay, but. . .

- $n^{10000000...}$ is polynomial
- 30000000000000000³ is polynomial
- Are those really efficient?

Well, no, but, in practice...

when a polynomial algorithm is found the constants are actually low

Polynomial runtime is a very low bar, if we can't even get that...

Reductions

This lecture is about exposing hidden similarities between problems.

We will show that problems that are **cosmetically different** are **substantially the same**!

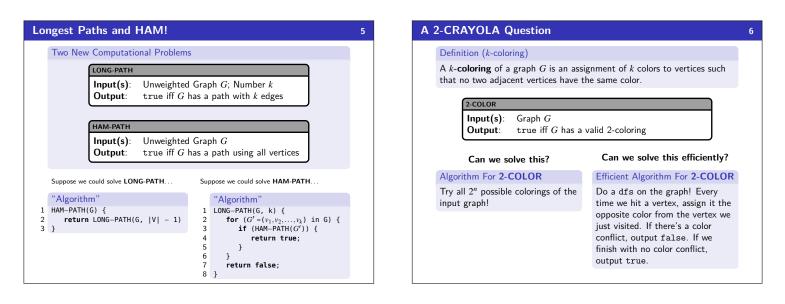
Our main tool to do this is called a reduction:

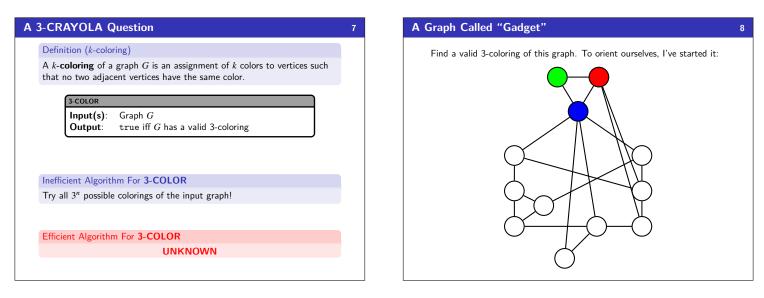
Reductions

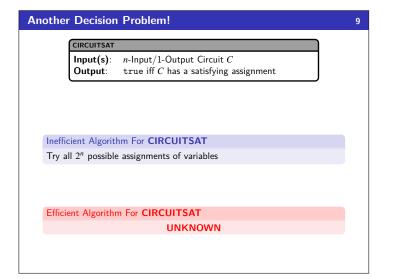
Decision Problems

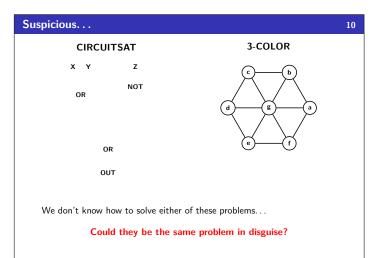
We have two decision problems, \boldsymbol{A} and $\boldsymbol{B}.$ To show that \boldsymbol{A} is "at least as hard as" $\boldsymbol{B},$ we

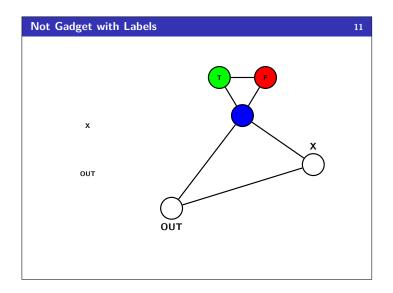
- Suppose we can solve A
- \blacksquare Create an algorithm, which calls ${\bm A}$ as a method, to solve ${\bm B}$
- To show they're the same, we have to do both directions.

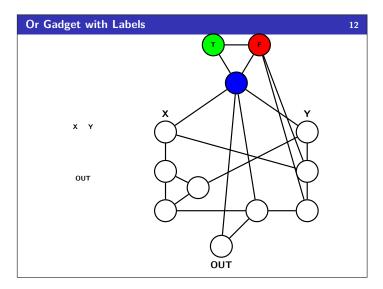


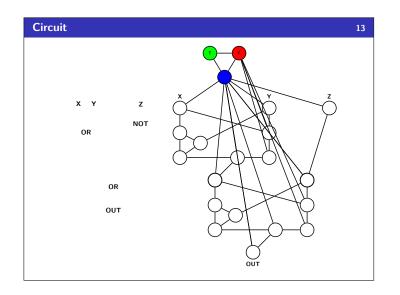


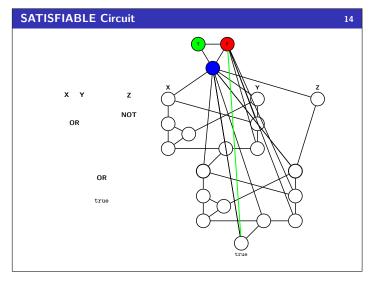












Lesson

We found a way to "emulate" circuit satisfiability using three coloring!

15

If we can find a solution to $\ensuremath{\textbf{3-COLOR}}$, we can solve $\ensuremath{\textbf{CIRCUITSAT}}$ quickly.

These problems are substantially the same