Adam Blank Lecture 1 Winter 2016

335

Data Abstractions

Administrivia
A Data Structures Problem

Review of Stacks & Queues

Course Goals 2

During the course, we will. . .
m Implement many different data structures
m Discuss trade-offs between them
m Rigorously analyze the algorithms that use them (math!)
m Be able to pick “the right one for the job”
m Experience the purposes and headaches of multithreading

After the course, you will be able to. ..

m make good design choices as a developer, project manager, or
system customer

m justify and communicate your design decisions

This is the course where you stop thinking like a “Java
Programmer” and start thinking like a Computer Scientist!

CSE 332: Data Abstractions

Welcome to CSE 332!

HP“a
woy! M

AN

Mj name
K AJ/“”'

What Am | Getting Into? 1

Course Material
m “Classic” Data Structures/Algorithms
m Rigorously analyze efficiency
m When to use each type of data structure
m Sorting
m Dictionary ADT
m Parallelism and Concurrency

CSE 143 vs. CSE 332
m Client of Priority Queue vs. Implementor of Priority Queue
m Linked Lists vs. Graphs
m BST vs. Balanced BST
m Merge Sort vs. Advanced Sorting
m X vs. Parallelism

Support and Asking for Help 3

Resources
m Section every week!
m Lots of office hours!

m Piazza!

Asking for help is not a sign of weakness; it’s a sign of strength.

Boring Administrivia 4

Course Website
http://cs.uw.edu/332

Grading
m 35% programming projects, 25% exercises, 20% midterm, 20% final

u four tokens

Partner Projects
m All three programming projects are “partners projects”
m If you want to work alone, you must petition to do it.
m Please sign up for one of the options TODAY!

Textbook
Data Structures and Algorithm Analysis in Java (3rd edition) by Weiss

And We're Off! 6

Choose a data structure and algorithms to solve the following problem:

Prefix Sums
Input: An array arr of size n.
Methods: i
m arr.sum(i) should return) arr[k]
k=0
m arr.update(i, value) should update the value of the array at
index i with value.

Then, analyze how good your solution is.

Naive Implementation

Structure: The input array.
arr.sum(i): Loop from O to i adding up the elements.
arr.update(i, value): Update index i with value.

How good is it? sum is O(n); update is O(1).

Suppose we know update is going to happen very rarely but sum will
happen a lot. Can we do better?

Better Than Nothing. .. 8

Which is better?

Second Solution
m sum is O(1)
m update is O(n)

First Solution
m sum is O(n)
m update is O(1)

This is a design trade-off!
The answer is sometimes the left and sometimes the right.

The left is better when. ..
m sum is rare; update is frequent

m We aren't allowed to change the data structure (or we're not allowed
extra space).

The right is better when. ..
m sum is frequent; update is rare

m We're more concerned with the time complexity of sum than our
space efficiency

My Philosophy 5

Do what helps you most.

... but active learning has been proven to result in better performance.

A Little More Clever 7

Prefix Sums

Input: An array arr of size n.
Methods: i
m arr.sum(i) should return)" arr[k]
k=0
m arr.update (i, value) should update the value of the array at
index i with value.

Then, analyze how good your solution is.

Another Try (?)

Structure: An array, partials of partial sums (e.g. [3, 1, 9] —

[3, 4, 131)

arr.sum(i): Return partials[i].

arr.update(i, value): Update every index from i to the end by adding the
difference between old and new.

How good is it? sum is O(1); update is O(n).

EVEN BETTER 9

Consider the following input array:

arr:‘3‘6‘2‘7‘1‘9‘

arr(0) arr(1] arr(2] arr(3] arr(4] arr(5]

Let's get fancy now. Consider the following split of the array:

EVEN BETTER

Consider the following input array:

arr:‘3‘6‘2‘7‘1‘9‘

arr(0] arr(l] arr2] arr(3] arr(4] arr(5]

Let's build up a tree that stores partial sums in each node. Now go one
level up:

RN A
0-1 2.2
-1

1

0-0 1

EVEN BETTER 10
Consider the following input array:
arr:‘3‘6 2‘7‘1‘9‘
arr [0] arr[1] arr[2] arr (3] arr([4] arr[5]
Let's build up a tree that stores partial sums in each node. Start at the
leaves:
1
EVEN BETTER 12
Consider the following input array:
arr: [3 [6 [2 [7 [1] 9 |
arr [0] arr[1] arr[2] arr[3] arr [4] arr [5]
Let's build up a tree that stores partial sums in each node. And
another. ..
db &b
0-1 2-2 3-4 5-5
14

EVEN BETTER

Consider the following input array:

arr: [3] 6 [2 [7] 17]9]

arr[0) arr(1] arr[2] arr(3] arr[4] arr(5]

0-5

How Do We Write update?
Walk up the tree from the leaf node that represents the index we're
updating. Change each node accordingly.

What is the complexity of update?
It's O(logn), because the tree is balanced.

EVEN BETTER 13
Consider the following input array:
arr: [3 [6 [2 [7 [1] 9]
arr[0] arr[1] arr[2] arr (3] arr[4] arr[5])
And finally, we get:
0-2 3-5
d % d b
0-1 2-2 3-4 5-5
Let’s use THIS as our data structure.
(For reference, this data structure is called a Segment Tree.)
15

EVEN BETTER

« e
do ¢
d 5 d b

How Do We Write sum(i)?

1 sum(i) = sum(i, root);

2 sum(i, node) {

3 if (node.range is completely outside (0, i)) {

4 return 0;

5 }

6 else if ((0, i) is contained in node.range) {

7 return sum(i, node.left) + sum(i, node.right);
8

9 else {

10 return node.value;

}
See above for sum(4).

This is O(logn), btw.

Putting It All Together 16
While trying to solve this problem, we did the following things:
m Considered an algorithmic problem and attempted to solve it
m Chose data structures and algorithms to solve the problem (duh...)
m Analyzed code for runtime
m Considered trade-offs between different implementations
m Learned a new data structure which helped us solve the problem
much better than before
m Ran into analyzing a recursive runtime
One thing we didn't consider (but that we will later!) was how to solve
the problem if we had multiple processors.
This course is about learning fundamental data structures and
algorithms to help you solve Computer Science problems.
Excited yet? Okay...what if | told you this is an interview question?
Stacks & Queues 18
Queue ADT
enqueue(val) | Adds val to the queue.
dequeue () Returns the least-recent item not already returned by a
dequeue. (Errors if empty.)
peek () Returns the least-recent item not already returned by a
dequeue. (Errors if empty.)
isEmpty () Returns true if all inserted elements have been returned by
a dequeue.
Stack ADT
push(val) Adds val to the stack.
pop() Returns the most-recent item not already returned by a
pop. (Errors if empty.)
peek() Returns the most-recent item not already returned by a
pop. (Errors if empty.)
isEmpty () Returns true if all inserted elements have been returned by
a pop.
Why Do We Care About ADTs? 20

ADTs are used to COMMUNICATE ideas more easily!

Parentheses Matching

Given a string of parentheses (i.e. (,), [, 1), figure out if the
parentheses are matched.

WORST: A particular implementation in a particular language using the

wrong ADT
for (int i = 0; i < str.length(); i++) {
if (str.charAt(i) == '(’ || str.charAt(i) == "[") {
list.add(str.charAt(i));
}
else if ((str.charAt(i) == ')’ && list.get(list.length() — 1) == "(’) ||
(str.charAt(i) == ']’ && list.get(list.length() — 1) == '[")) {
list.remove(list.length() - 1);
}
else {

throw new Exception();

}

}
if (list.size() > 0) {
throw new Exception();

¥

Data Structures & Abstract Data Types 17
Definition (Abstract Data Type [ADT])
An Abstract Data Type is a mathematical model of the properties
necessary for a data structure to be a particular data type. To put it
another way, an ADT specifies what a data type is and the valid
operations on it.
Definition (Data Structure)
A Data Structure is a particular implementation of an ADT.
ADT | Data Structure Implementation
Stack ArrayLlist java.util.Stack
Stack LinkedList -
Queue LinkedList java.util.LinkedList
Stack & Queue Examples 19
Queue Examples
dequeue ()
<[Tl2]4]2[3) = — <[2[4]2]3]~
7
enqueue (9)
= <[2]4]2]3]9]
Stack Examples
i " i
pop() push(9) -
: O
! 7
Why Do We Care About ADTs? 21

ADTs are used to COMMUNICATE ideas more easily!

Parentheses Matching

Given a string of parentheses (i.e. (,), [, 1), figure out if the
parentheses are matched.

REALLY BAD: A particular implementation, in a particular language
for (int i = 0; i < str.length(); i++) {
if (str.charAt(i) == '(’ || str.charAt(i) == '[") {
stack.push(str.charAt(i));

}
else if ((str.charAt(i)
(str.charAt(i)
stack.pop();

')’ && stack.peek()
']’ && stack.peek()

else {
throw new Exception();

}

}
if (!stack.isEmpty()) {
throw new Exception();

}

Why Do We Care About ADTs? 22 Queue Implementations 23

We can implement the Queue ADT using multiple ideas:

m Linked List Queue Data Structure
ADTs are used to COMMUNICATE ideas more easily! Q

front Data Structure
enqueue(x) {
BETTER: Pseudo-code using the right ADT . back.next = new Node(x);
for (index in str) { back = back.next;
if (str[index] is open) { :

put it on the stack m Empty queue? dequeue() {

x = front.item;

}
else if (str[index] is top of stack and it matches the top element) { front = front.next;

m Time complexities?

pop the top element off the stack return x;
})i
else {
throw error
) } m Circular Array Queue Data Structure
if (stack isn’t empty) { . oTo07T0 0
throw error; oY Q.‘2,‘J‘J‘I‘Z‘B“”n‘n‘nlft Data
" front back enqueue(x) {
Q[back] = x;

BEST: High-level description using the right ADT back = (back + 1) % size;

To match parentheses, loop through the string pushing open parens onto
the stack. When we see a close paren, make sure it matches and pop it
off. If the stack isn't empty at the end, they don’t match.

m Empty queue? L
dequeue() {
x = Q[front];
front = (front + 1) % size;
return x;

}

m Time complexities?

Today’s Takeaways! ﬁ

Trade-Offs? 24

H LinkedList Queue ‘ CircularArray Queue

Space (in queue)?

No wasted space

Extra (or too little?)

Space (per element)?

Larger

Smaller

Operation Times?

Fast

Fast

Other Concerns?

Never runs out of space

Why would we ever use a circular array queue?

m In practice, creating new

Nodes can fail

m Memory allocation can be expensive

Can run out of space

m Sometimes, we know in advance what the maximum size of the

queue will be (see P1!)

m Hopefully you're excited!

m What is an ADT? What is a Data Structure?

m Understand Stack and Queue ADTs

m Understand Queue implementations

Homework!

Go to the course website and:

m Read the partners handout and fill out the partners form.
m Finish Pokemon Purple & Gold (?77)

Also, the website for petitioning into the course is here:

http://tinyurl.com/hjl3tpj

