A disjoint sets data structure keeps trock of mutiple ses which de not share any elements. Here's the ADT:

UnionFind ADT

Example

1
6],
2 UF uf = new UF(list); // State: \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}
uf.find(1) ;
uf.find(2);
uf.union(1, 2);
uf.find(1);
uf.find(2);
uf.union (3, 5) ;
uf.union(1, 3);
uf.find(3);
uf.find(6);
// Returns 1
// Returns 2
// State: $\{1,2\},\{3\},\{4\},\{5\},\{6\}$
// Returns 1
// Returns 1
// State: $\{1,2\},\{3,5\},\{4\},\{6\}$
// State: $\{1,2,3,5\},\{4\},\{6\}$
// Returns 1
// Returns 6

Data Structure

Type: List<LinkedList<Integer>>
Idea: A mapping from id \rightarrow a list of ids in the same set
Pictorial View

Data Structure

find (x)

```
1 find(x) {
2 return a[x].front;
3}
```


Data Structure

Type: List<LinkedList<Integer>>
Idea: A mapping from id \rightarrow a list of ids in the same set
Pictorial View

Data Structure


```
union(x, y)
union(x, y) {
    curr = a[x].head;
    a[y].tail.next = curr;
    while (curr != null && curr.next != null) {
        a[curr.data] = a[y].head
        curr = curr.next;
    }
```


Data Structure

Type: List<LinkedList<Integer>>
Idea: A mapping from id \rightarrow a list of ids in the same set

Amortized Analysis

Consider any m find/union operations. The worst case is going to be that all the operations are all unions, but which unions?

Keep the sets as balanced as possible. This will get us the largest gurantee possible, as quickly as possible

We started with a list of linked lists. Then, we realized that we could use references to the same linked list to save memory.

We can do even better. The idea is to use an "implicit list".

Data Structure

Type: An array
Idea: Each index has either the value of the "next" thing in its set or a negative number representing the size of the set

Implementation
1

```
init(x) { a[x] = -1 }
```

Data Structure

-2	0	6	2	-1	-1	-3
$\mathrm{a}[0]$	$\mathrm{a}[1]$	$\mathrm{a}:[2]$	$\mathrm{a}[3]$	$\mathrm{a}[4]$	$\mathrm{a}[5]$	a
" $[1]$						
- Non-canonicals" store "pointers"						

" "Canonicals" store -size

Data Structure

Type: An array
Idea: Each index has either the value of the "next" thing in its set or a negative number representing the size of the set

Pictorial View

Data Structure

-2					
$\frac{a}{a[1]}$	$-\frac{6}{a[1]}$	2	-1	-1	-3

- "Non-canonicals" store "pointers"
- "Canonicals" store -size

Implementation

```
```

init(x) { a[x] = -1 }

```
```

init(x) { a[x] = -1 }
find(x) {
find(x) {
while(a[x] >= 0) {
while(a[x] >= 0) {
x = a[x]
x = a[x]
}
}
return x
return x
}

```
```

}

```
```


Analyzing Implementation 3

}

```
```

```
OLD find(x)
```

```
OLD find(x)
find(x) {
find(x) {
    while(a[x] >= 0) {
    while(a[x] >= 0) {
        x = a[x]
        x = a[x]
    }
    }
    return x
```

 return x
    ```

In Words: Once we've found a node. . .save it.
    NEW find( \(x\) )
1 find(x) \{
        if \((a[x]<0)\) \{
        return \(x\)
    \}
    \(a[x]=\operatorname{find}(a[x])\)
    return \(a[x]\)

Amortized Analysis of \(m\) find Operations?
Consider what we know:
- We know the worst case height of a tree is \(\lg (n)\).
- We know it's difficult to make a tree of large height.
- We know that as soon as we access a path in a tree, it flattens the whole path
This feels like it should be better than \(\lg (n)\), and it is.

We can use facts to show this, but its outside the scope of this lecture. Instead, we'll just talk about two bounds.

But it gets better. . .

\section*{Upper Bound 2: \(\operatorname{find}(x)\) is amortized \(\mathcal{O}(\alpha(n))\)}

The Ackermann function grows even more quickly than \(1 / \sqrt{\prime}(\lambda)\).

It turns out \(\alpha(n)\), the inverse Ackermann function is also an upper bound...

Interestingly, it is also a lower bound for the disjoint data structures problem! We can't do better than the algorithm we came up with! (Just like with sorting!)```

