Disjoint Sets ADT 1

A disjoint sets data structure keeps trg
share any elements. Here's the ADT:

UnionFind ADT

Returns a number representing the set that x is in.
union(x, y) Updates the sets so whatever sets x and y were in are now
considered the same sets.
Example
8 list = [1, 2, 3, 4, 5, 6];
P UF uf = new UF(list); // State: {1}, {2}, {3}, {4}, {5}, {6}
Yl uf.find(1); Returns 1
'S uf.find(2); Returns 2
[l uf.union(1l, 2); State: {1, 2}, {3}, {4}, {5}, {6}
(@ uf.find(1); Returns 1
g uf.find(2); Returns 1
8 uf.union(3, 5); State: {1, 2}, {3, 5}, {4}, {6}
N uf.union(1l, 3); State: {1, 2, 3, 5}, {4}, {6}
0B uf.find(3); Returns 1
IR uf.find(6); Returns 6

Implementation 1: A List of LinkedLists

Data Structure
Type: List<LinkedList<Integer>>

Idea: A mapping from id — a list of ids in the same set

Pictorial View
Data Structure

find (x) union(x, y)

N find(x) { I8 union(x, y) {
2 return a[x].front; 2 .
3 @ 3 @

Implementation 1.5: A List of LinkedLists

Data Structure

Type: List<LinkedList<Integer>>

Idea: A mapping from id — a list of ids in the same set

Pictorial View
Data Structure

union(x, y)

union(x, y) {
curr = a[x].head;
alyl.tail.next = curr;
while (curr != null & curr.next != null) {

find(x)
1

find(x) {
2 return a[x].front;
3@

a[curr.data] = a[y].head
curr = curr.next;

}
}

© NG A WN R

Implementation 2: A List of LinkedLists Unioned-By-Weight 6

Data Structure

Type: List<LinkedList<Integer>>
Idea: A mapping from id — a list of ids in the same set

Amortized Analysis
Consider any m find/union operations. The worst case is going to be
that all the operations are all unions, but which unions?

Keep the sets as balanced as possible. This will get us the largest
gurantee possible, as quickly as possible

nsetsof | —— setsof2M>...

Implementation 3: IMPLICIT Lists Unioned-By-Size

We started with a list of linked lists. Then, we realized that we could
use references to the same linked list to save memory.

We can do even better. The idea is to use an “implicit list".

[(3[A[A[4[A(0]

a[0] a[l] a[2] a[3] a[4] a[5]
—~—,

Implementation 3: IMPLICIT Lists Unioned-By-Size

Data Structure

Type: An array
Idea: Each index has either the value of the “next” thing in its set or a
negative number representing the size of the set

Implementation
init(x) { a[x] = -1}

Pictorial View

[2]0f6[2[-1]-1[3]

a[0] all] af2] al3] al4] als] 2i%]

B “Non-canonicals” store “pointers”

B “Canonicals” store -size

Implementation 3: IMPLICIT Lists Unioned-By-Size

Data Structure

Type: An array
Idea: Each index has either the value of the “next” thing in its set or a
negative number representing the size of the set

Implementation
init(x) { alx] = -1 }
find(x) {
while(a[x] >= 0) {
x = a[x]

Pictorial View

}

return x

21O 62 [1]1]3]

aiv] all] a[2] al3] al4] als] al6]

B “Non-canonicals” store “pointers”

B “Canonicals” store -size

Analyzing Implementation 3

’ — B \(
YN0 R R T ARy

hﬁ ') @ alol all al2l ai) B al6l
L\ Q)=

al4] C
Implementation
init(x) { al[x] = -1 }
find(x) { hen, union(x, y) €

hile(a[x] >= 0) { ; g
e a)[(x] (find(x) +£ind(y)).
}

return x O, we only need
¥ analyze find (x).

Assume we only call
each size/find once.

Bre0l B W N =

size(x) { return —a[find(x)] } We claim that

union(x, y) find(x) € O(lgn).
if (size(x) > size(y)) { To prove this, we will
X, y = swap(x, y) o
} show the height of the

/7 Now, we have: size(x) <= size(y) tree resultlng-from. some
a[find(x)] = find(y) number of unions is
O(lgn)

// Update the size
alfind(y)] = size(x) + size(y) (Sound fami“ar?)

Implementation 4: Implicit Lists Unioned-By-Size with Path Compression 11

NEW find(x)
find(x) {
if (alx] < 0) {
return x

OLD find(x)
find(x) {
while(a[x] >= 0) {
x = a[x]

}
a[x] = find(a[x])
return a[x]

}

return x

oG AW
N oo R WwN

}

In Words: Once we've found a node. . . save it. \ Vs /
A\ (4

Amortized Analysis of m find Operations?

Consider what we know:
m We know the worst case height of a tree is lg(n).
B We know it's difficult to make a tree of large height.

m We know that as soon as we access a path in a tree, it flattens the
whole path

This feels like it should be better than lg(n), and it is.

We can use facts to show this, but its outside the scope of this lecture.
Instead, we'll just talk about two bounds.

Inverse Ackermann function

But it gets better. ..

Upper Bound 2: find(x) is amortized O(o(n))

IRSTIe

The Ackermann function grows even more quickly than).

It turns out o(n), the inverse Ackermann function is also an upper
bound. ..

Interestingly, it is also a lower bound for the disjoint data structures
problem! We can't do better than the algorithm we came up with! (Just
like with sorting!)

27

