
Disjoint Sets ADT 1

A disjoint sets data structure keeps track of multiple sets which do not
share any elements. Here’s the ADT:

UnionFind ADT
find(x) Returns a number representing the set that x is in.
union(x, y) Updates the sets so whatever sets x and y were in are now

considered the same sets.

Example
1 list = [1, 2, 3, 4, 5, 6];
2 UF uf = new UF(list); // State: {1}, {2}, {3}, {4}, {5}, {6}
3 uf.find(1); // Returns 1
4 uf.find(2); // Returns 2
5 uf.union(1, 2); // State: {1, 2}, {3}, {4}, {5}, {6}
6 uf.find(1); // Returns 1
7 uf.find(2); // Returns 1
8 uf.union(3, 5); // State: {1, 2}, {3, 5}, {4}, {6}
9 uf.union(1, 3); // State: {1, 2, 3, 5}, {4}, {6}

10 uf.find(3); // Returns 1
11 uf.find(6); // Returns 6



Implementation 1: A List of LinkedLists 3

Data Structure
Type: List<LinkedList<Integer>>

Idea: A mapping from id → a list of ids in the same set
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find(x)

1 find(x) {
2 return a[x].front;
3 }

union(x, y)

1 union(x, y) {
2 ...
3 }



Implementation 1.5: A List of LinkedLists 4

Data Structure
Type: List<LinkedList<Integer>>

Idea: A mapping from id → a list of ids in the same set

Pictorial View
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Data Structure
a[0]: ● 0 �→ 1 �→
a[1]: ●
a[2]: ● 2 �→ 3 �→ 6 �→
a[3]: ●
a[4]: ● 4 �→
a[5]: ●
a[6]: ● 5 �→

find(x)

1 find(x) {
2 return a[x].front;
3 }

union(x, y)

1 union(x, y) {
2 curr = a[x].head;
3 a[y].tail.next = curr;
4 while (curr != null && curr.next != null) {
5 a[curr.data] = a[y].head
6 curr = curr.next;
7 }
8 }



Implementation 3: IMPLICIT Lists Unioned-By-Size 7

We started with a list of linked lists. Then, we realized that we could
use references to the same linked list to save memory.

We can do even better. The idea is to use an “implicit list”.

Example (Explicit List)

5 �→ 0 �→ 3 �→ 4 �→
1 �→ 2 �→

Example (Implicit List)
3 -1 -1 4 -1 0

a[0] a[1] a[2] a[3] a[4] a[5]

If you’ve already taken CSE 351, you’ve seen this idea already! When
implementing malloc, you store a free list. You can save a lot of
memory (which in malloc is important. . . ) by using the unused data

fields to store the pointers.

Using An Implicit List
We need to store:

pointers to get to the canonical member
the size of the set
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Implementation 3: IMPLICIT Lists Unioned-By-Size 8

Data Structure
Type: An array
Idea: Each index has either the value of the “next” thing in its set or a
negative number representing the size of the set

Pictorial View
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Data Structure
-2 0 6 2 -1 -1 -3
a[0] a[1] a[2] a[3] a[4] a[5] a[6]

“Non-canonicals” store “pointers”

“Canonicals” store -size

Implementation
1 init(x) { a[x] = −1 }

2 find(x) {
3 while(a[x] >= 0) {
4 x = a[x]
5 }
6 return x
7 }
8

9 size(x) { return −a[find(x)] }
10

11 union(x, y) {
12 if (size(x) > size(y)) {
13 x, y = swap(x, y)
14 }
15

16 // Now, we have: size(x) <= size(y)
17 a[find(x)] = find(y)
18

19 // Update the size
20 a[find(y)] = size(x) + size(y)
21 }
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Implementation 4: Implicit Lists Unioned-By-Size with Path Compression 11

OLD find(x)

1 find(x) {
2 while(a[x] >= 0) {
3 x = a[x]
4 }
5 return x
6 }

NEW find(x)

1 find(x) {
2 if (a[x] < 0) {
3 return x
4 }
5 a[x] = find(a[x])
6 return a[x]
7 }

In Words: Once we’ve found a node. . . save it.

Amortized Analysis of m find Operations?
Consider what we know:

We know the worst case height of a tree is lg(n).
We know it’s di�cult to make a tree of large height.
We know that as soon as we access a path in a tree, it flattens the
whole path

This feels like it should be better than lg(n), and it is.

We can use facts to show this, but its outside the scope of this lecture.
Instead, we’ll just talk about two bounds.



Inverse Ackermann function 27

But it gets better. . .

Upper Bound 2: find(x) is amortized O(a(n))

The Ackermann function grows even more quickly than lg

∗(n).
It turns out a(n), the inverse Ackermann function is also an upper
bound. . .

Interestingly, it is also a lower bound for the disjoint data structures
problem! We can’t do better than the algorithm we came up with! (Just
like with sorting!)


