Data Abstractions

Graphs 4:
 Minimum Spanning Trees


```
dijkstra(G, source) {
    dist = new Dictionary();
    worklist = [];
    for (v : V) {
        if (v == source) { dist[v] = 0; }
        else { dist[v] = \infty; }
        worklist.add((v, dist[v]));
    }
    while (worklist.hasWork()) {
        v = next();
        for (u : v.neighbors()) {
            dist[u] = min(dist[u], dist[v] + w(v, u));
            worklist.decreaseKey(u, dist[u]);
        }
    }
    return dist;
}
```

```
dijicstre(G, source) {
    dist = new Dictionary();
    worklist = [];
    for (v : V) {
        if (v == source) { dist[v] = 0; }
        else { dist[v] = \infty; }
        worklist.add((v, dist[v]));
    }
    while (worklist.hasWork()) {
        v = next();
        for (u : v.neighbors()) {
            dist[u] = min(dist[u], dist[v] + w(v, u));
            worklist.decreaseKey(u, dist[u]);
        }
    }
    return dist;
}
```

What Does Difketra's Algorithm Do Now?

Definition (Minimum Spanning Tree)
Given a graph $G=(V, E)$, find a subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that

- G^{\prime} is a tree.
- $V=V^{\prime}$ (G^{\prime} is spanning.)
- $\sum_{e \in E^{\prime}} w(e)$ is minimized.

Example

- Given a layout of houses, where should we place the phone lines to minimize cost?

How can we design circuits to minimize the amount of wire?

- Implementing efficient multiple constant multiplications

Minimizing the number of packets transmitted across a network

Machine learning (e.g., real-time face verification)

- Graphics (e.g., image segmentation)

MST Example

MST Example

- Find a Minimum Spanning Tree of this graph
- Are there any others?
- Come up with a simple algorithm to find MSTs

MST Uniqueness

If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.

MST Example

- Find a Minimum Spanning Tree of this graph
- Are there any others?
- Come up with a simple algorithm to find MSTs

MST Uniqueness

If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.

MST Example

- Find a Minimum Spanning Tree of this graph
- Are there any others?
- Come up with a simple algorithm to find MSTs

MST Uniqueness

If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.

MST Example

- Find a Minimum Spanning Tree of this graph
- Are there any others?
- Come up with a simple algorithm to find MSTs

MST Uniqueness

If a graph has all unique edges, there is a unique MST. Otherwise, there might be multiple MSTs.

Back To Difkstra's Prim's Algorithm

```
prim(G) {
    conns = new Dictionary();
    worklist = [];
    for (v : V) {
        conns[v] = null;
        worklist.add((v, \infty));
    }
    while (worklist.hasWork()) {
        v = next();
        for (u : v.neighbors()) {
            if (w(v, u) < w(conns[u], u)) {
            conns[u] = v;
            worklist.decreaseKey(
                u, w(v, u)
            );
                }
        }
    }
    return conns;
}
```


This really is almost identical to Dijkstra's Algorithm! We build up an MST by adding vertices to a "done set" and keeping track of what edge got us there.

Do we have to use vertices? Can we use edges instead?

Back To Difkstra's Prim's Algorithm

```
prim(G) {
    conns = new Dictionary();
    worklist = [];
    for (v : V) {
        conns[v] = null;
        worklist.add((v, \infty));
    }
    while (worklist.hasWork()) {
        v = next();
        for (u : v.neighbors()) {
            if (w(v, u) < w(conns[u], u)) {
            conns[u] = v;
            worklist.decreaseKey(
                u, w(v, u)
            );
                }
        }
    }
    return conns;
}
```


This really is almost identical to Dijkstra's Algorithm! We build up an MST by adding vertices to a "done set" and keeping track of what edge got us there.

Do we have to use vertices? Can we use edges instead?

```
Simple MST
```

```
findMST(G) {
    mst = {};
    for ((v, w) \insorted(E)) {
        foundV = foundW = false;
        for ((a, b) & mst) {
            foundv |= (a == v) | ( b == v);
            foundW |= (a == w) || (b == w);
        }
        if (!foundV || !foundW) {
            mst.add((v, w));
        }
    }
    return mst;
}
```


Some Questions!

- How many edges is the MST?
- What is the runtime of this algorithm?
- What is the slow operation of this algorithm?

Simple MST

```
findMST(G) {
    mst = {};
    for ((v, w) \in sorted(E)) {
        foundV = foundW = false;
        for ((a, b) & mst) {
            foundV |= (a == v) || (b == v);
            foundW |= (a == w) || (b == w);
        }
        if (!foundV || !foundW) {
            mst.add((v, w));
        }
    }
    return mst;
}
```


Some Questions!

- How many edges is the MST?

Every MST will have $|V|-1$ edges; one edge to include each vertex

- What is the runtime of this algorithm?
- What is the slow operation of this algorithm?

Simple MST

```
findMST(G) {
    mst = {};
    for ((v, w) \in sorted(E)) {
        foundV = foundW = false;
        for ((a, b) & mst) {
            foundV |= (a == v) || (b == v);
            foundW |= (a == w) || (b == w);
        }
        if (!foundV || !foundW) {
            mst.add((v, w));
        }
    }
    return mst;
}
```


Some Questions!

- How many edges is the MST?

Every MST will have $|V|-1$ edges; one edge to include each vertex

- What is the runtime of this algorithm? $\mathcal{O}(|E| \lg (|E|)+|E||V|)$, because sorting takes $\mathcal{O}(|E| \lg (|E|))$, the MST has at worst $\mathcal{O}(|V|)$ edges, and we have to iterate through the MST $|E|$ times.
- What is the slow operation of this algorithm?

Simple MST

```
findMST(G) {
    mst = {};
    for ((v, w) \in sorted(E)) {
        foundV = foundW = false;
        for ((a, b) & mst) {
            foundV |= (a == v) || (b == v);
            foundW |= (a == w) || (b == w);
        }
        if (!foundV || !foundW) {
            mst.add((v, w));
        }
    }
    return mst;
}
```


Some Questions!

- How many edges is the MST?

Every MST will have $|V|-1$ edges; one edge to include each vertex

- What is the runtime of this algorithm? $\mathcal{O}(|E| \lg (|E|)+|E||V|)$, because sorting takes $\mathcal{O}(|E| \lg (|E|))$, the MST has at worst $\mathcal{O}(|V|)$ edges, and we have to iterate through the MST $|E|$ times.
- What is the slow operation of this algorithm? Checking if a vertex is already in our MST is very slow here. Can we do better?

A disjoint sets data structure keeps track of multiple sets which do not share any elements. Here's the ADT:

UnionFind ADT

find (\mathbf{x})	Returns a number representing the set that \mathbf{x} is in.
union (\mathbf{x}, \mathbf{y})	Updates the sets so whatever sets \mathbf{x} and \mathbf{y} were in are now considered the same sets.

Example

1
2
3
4
4
5
6
7
8
9
9
10
11

```
list = [1, 2, 3, 4, 5, 6];
UF uf = new UF(list); // State: {1}, {2}, {3}, {4}, {5}, {6}
uf.find(1); // Returns 1
uf.find(2); // Returns 2
uf.union(1, 2); // State: {1, 2}, {3}, {4}, {5}, {6}
uf.find(1); // Returns 1
uf.find(2); // Returns 1
uf.union(3, 5); // State: {1, 2}, {3, 5}, {4}, {6}
uf.union(1, 3); // State: {1, 2, 3, 5}, {4}, {6}
uf.find(3); // Returns 1
uf.find(6); // Returns 6
```


Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```


Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Simple MST

```
kruskal(G) {
    mst = {};
    forest = new UnionFind(V);
    for ((v, w) \in sorted(E)) {
        if (forest.find(v) != forest.find(w)) {
            mst.add((v, w));
            forest.union(v, w);
        }
    }
    return mst;
}
```

Forest

Graph

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:
1 The output is some spanning tree
2 The output has minimum weight

Kruskal's Algorithm Outputs SOME Spanning Tree

We must show that the output, G^{\prime} is spanning, connected, and acyclic.

- The algorithm adds an edge whenever one of its ends is not already in the tree. This means that every vertex has an edge in the tree.
- It's acyclic because we check before adding an edge.
- Connected?
- The original graph is connected; there exists a path between u and v
- Consider the first edge that we look at which is on some path between u and v.
- Since we haven't previously considered any edge on any path between u and v, it must be the case that u and v are in distinct sets in the disjoint sets data structure. So, we add that edge.
Since there is a path between every u and v in the graph in G^{\prime}, G^{\prime} is connected by definition.

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:
1 The output is some spanning tree
2 The output has minimum weight

Kruskal's Algorithm Outputs SOME Spanning Tree

We must show that the output, G^{\prime} is spanning, connected, and acyclic.

- The algorithm adds an edge whenever one of its ends is not already in the tree. This means that every vertex has an edge in the tree.
- It's acyclic because we check before adding an edge.
- Connected?
- The original graph is connected; there exists a path between u and v
- Consider the first edge that we look at which is on some path between u and v.
- Since we haven't previously considered any edge on any path between u and v, it must be the case that u and v are in distinct sets in the disjoint sets data structure. So, we add that edge.
Since there is a path between every u and v in the graph in G^{\prime}, G^{\prime} is connected by definition.

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:
1 The output is some spanning tree
2 The output has minimum weight

Kruskal's Algorithm Outputs SOME Spanning Tree

We must show that the output, G^{\prime} is spanning, connected, and acyclic.

- The algorithm adds an edge whenever one of its ends is not already in the tree. This means that every vertex has an edge in the tree.
- It's acyclic because we check before adding an edge.
- Connected?
- The original graph is connected; there exists a path between u and v
- Consider the first edge that we look at which is on some path between u and v.
- Since we haven't previously considered any edge on any path between u and v, it must be the case that u and v are in distinct sets in the disjoint sets data structure. So, we add that edge.
Since there is a path between every u and v in the graph in G^{\prime}, G^{\prime} is connected by definition.

Proving Correctness

To prove that Kruskal's Algorithm is correct, we must prove:
1 The output is some spanning tree
2 The output has minimum weight
So, now, we know that G^{\prime} is a spanning tree!
Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree
Let the edges we add to G^{\prime} be, in order, $e_{1}, e_{2}, \ldots e_{k}$.
Claim: For all $0 \leq i \leq k,\left\{e_{1}, e_{2}, \ldots e_{i}\right\} \subseteq T_{i}$ for some MST T_{i}.
Proof: We go by induction.
Base Case. $\varnothing \subseteq G$ for every graph G.
Induction Hypothesis. Suppose the claim is true for iteration i.
Induction Step. By our IH , we know that $\left\{e_{1}, \ldots, e_{i}\right\} \subseteq T_{i}$, where T_{i} is some MST of G.
We consider two cases:

- If $e_{i+1} \in T_{i}$, then we choose $T_{i+1}=T_{i}$, and we're done.
- Otherwise...

So far, we know...

- T_{i} is a spanning tree of G. (earlier proof)
- that $\left\{e_{1}, \ldots, e_{i}\right\} \subseteq T_{i}$, where T_{i} is some MST of G. (induction hypothesis)
- $e_{i+1} \notin T_{i}$. (handled that case)

Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree (cont.)
Claim: For all $0 \leq i \leq k,\left\{e_{1}, e_{2}, \ldots e_{i}\right\} \subseteq T_{i}$ for some MST T_{i}.

- Since T_{i} is a spanning tree, it must have some other edge (call it e^{\prime}) which was added in place of e_{i+1}.
- It follows that $T_{i}+e_{i+1}$ must have a cycle!
- Note that $w\left(T_{i}-e^{\prime}+e_{i+1}\right)=w\left(T_{i}\right)-w\left(e^{\prime}\right)+w(e)$.
- Since we considered e_{i+1} before e^{\prime}, and the edges were sorted by weight, we know $w(e) \leq w\left(e^{\prime}\right) \Longleftrightarrow w(e)-w\left(e^{\prime}\right) \leq 0$.
- So,

$$
w\left(T_{i}-e^{\prime}+e_{i+1}\right)=w\left(T_{i}\right)-w\left(e^{\prime}\right)+w(e) \leq w\left(T_{i}\right)
$$

This means that $T_{i}-e^{\prime}+e_{i+1}$ has no more than the weight of any MST!

Almost There. . .

So far, we know. . .

- T_{i} is a spanning tree of G. (earlier proof)
- that $\left\{e_{1}, \ldots, e_{i}\right\} \subseteq T_{i}$, where T_{i} is some MST of G. (induction hypothesis)
- $e_{i+1} \notin T_{i}$. (handled that case)
- $w\left(T_{i}-e^{\prime}+e_{i+1}\right) \leq w\left(T_{i}\right)$

Kruskal's Algorithm Outputs Some MINIMUM Spanning Tree (cont.)
Claim: For all $0 \leq i \leq k,\left\{e_{1}, e_{2}, \ldots e_{i}\right\} \subseteq T_{i}$ for some MST T_{i}.
Finally, choose $T_{i+1}=T_{i}-e^{\prime}+e_{i+1}$.

- We already know it has the weight of an MST.
- Note that e connects the same nodes as e^{\prime}; so, it's also a spanning tree.
That's it! For each i, we found an MST that extends the previous one. So, the last one must also be an MST!
- Sort takes $\mathcal{O}(n \lg n)$
- We don't know how UnionFind works, but if we know...
- find is $\mathcal{O}(\lg n)$
union takes $\mathcal{O}(\lg n)$ time

The runtime is $\mathcal{O}(|E| \lg (|E|)+|E| \lg (|V|))$

Just how does union-find work? Stay tuned!

