Adam Blank Lecture 21 Winter 2016

335

Data Abstractions

Some Initial Thoughts 1
/G)—mo—»@—mo—»@)\

Example 3

worklist < worklist <[a @wOflist < worklist <[c<I[b<2[d<4

worklist <[b <2wWodklis# [« b <2wjorkst | e 2<[4-] e <12 [«
worklist | d <4wofkfist | < 0<[4harldidD [«—[e <10 [—
-
-

worklist g <7 woekkist) [«—| e < TOvgeklist [h <8 [e <10 |«
worklist

e< l(w?fklist —le il\@f!"d‘s'ﬁ «

CSE 332: Data Abstractions

Graphs 3:
Single-Source Shortest
Paths

The Idea 2

T
We will run a simulation of (infinitely many) ants exploring the graph.

The ants all move at identical speeds.

We're interested in the time step that some ant first reaches each vertex.

m At each step. ..

m The ants try to move along some new edge
m We “process” a vertex at the timestep that an ant arrives there
m When an ant arrives, they dispatch new ants to every out-edge

m We're done!

The Algorithm 4

1 dijkstra(G, source) {

2 // We will use a "sorted list" as our worklist, because the items
3 // in the work list are "events" which are processed in order
4

5 // (v, timestep) in worklist, where v is a vertex and timestep
6 // is the "time" the first ant got there

7 worklist = []; // These ants are "currently moving"

8

9 // All the ants begin at vertex v at time step zero

10 worklist.add((source, 0));

11

12 while (worklist.hasWork()) {

13 (v, time_to_v) = next();

14

15 // Since a cluster of ants got to v, we dispatch new ants
16 for (u : v.neighbors()) {

17 // When does a cluster of ants get to u? How does it change?
18 (u, time_to_u) = worklist.get(u);

19 // w(v, u) is the edge weight from v to u

20 time_from_v_to_u = w(v, u);

21 to_u = min(time_to_u, time_to_v + time_from_v_to_u);

22 worklist.add((u, to_u));

23 }

24 }

25 return dist;

26 }

Example 2

Final Dijkstra’s Algorithm

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19 }

dijkstra(G, source) {

dist = new Dictionary();
worklist = [];

for (v : V) {
if (v == source) { dist[v] = 0; }
else { dist[v] = oo; }
worklist.add((v, dist[v]));
}
while (worklist.hasWork()) {
v = next();
for (u : v.neighbors()) {
dist[u] = min(dist[u], dist[v] + w(v,

worklist.decreaseKey(u, dist[u]);
}
}

return dist;

u));

Okay, and to implement this? 6

m Our sorted list is slow; so, replace it with a priority queue.
m We need a way of “changing the priority of an element”
Remember, decreaseKey? That's exactly what it does!

To make that work, we need to store a reference to the index/vertex in
some dictionary.

Example 3 8

\é/

