Adam Blank Lecture 21 Winter 2016

Data Abstractions

CSE 332: Data Abstractions

\\< \:\
Graphs 35 v
Single-Source Shortest
Paths

Some Initial Thoughts 1

N
. Vot (Sonrt) €
MSL A W) > ARS = MW ,D')(A(),'
P & G W R | hS kee;(nu7

) & kv O) trck of

ho~n Yo &5
g\ R b 473 1 A

wlos §

Some Initial Thoughts

The Idea 2

We will run a simulation of (infinitely many) ants expﬁfl‘oring the graph. K

The ants all move at identical speeds.

We're interested in the time step that some ant first reaches each vertex

At each step. ..

The ants try to move along some new edge
We “process” a vertex at the timestep that an ant arrives there
When an ant arrives, they dispatch new ants to every out-edge

We're done!

Example

worklist <

Example

worklist | a <0 [«

Example

worklist <

SET]][

worklist | c<1 | b<2][d<4 |«

Example

worklist +[B<2 [d<4]

Example

worklist | b<2[d<4|e<]2 |«

Example

worklst (A €4 [<12]

Example

worklist | d<4 [f<4[e<10 |«

Example

worklist | f<4 [e<10 |«

Example

worklist | f<4 [e<10 |«

Example

worklist <[e <10 |«

Example

worklist «[<7 [€ <10 |

Example

worklist <[e <10 |«

Example

~| h<8

worklist

Example

o

~—| e<10

worklist

Example

worklist | e <9 |«

Example

worklist <

Example

worklist <

The Algorithm

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
28
24
25

26 }

dijkstra(G, source) =
// We will use a Q as our worklist, because the items
// in the work list areTevents" which are processed in order

/L (v, timestep) In worklist, where v is a vertex and timestep
// T 3 i : g4

worklist = [];

// All the ants begin at vertex v at time step zero
worklist.add((source, 0))z

worklist.has ne%{ \:\/&\\N’Q’ (\MX QM\(\'

v, time_to_v) =

// Since a cluster of ants got to v, we dispatch new ants
for (u : v.neighbors()) {

// When does Us u? How does it change?
(u, time_to_uN=%worklist. get(u), ;;L"_‘
// w(v, u) is the e i om v to u

time_from_v_to_u = w(v, u);
to_u = min(time_to_u, time_to_v + time_from_v_to_u);
worklist.add((u, to_u));

:) 14/(
leturn dist; }' y ~|

Example 2

\ﬁmﬁllﬂ

Okay, and to implement this?

Our sorted list is slow; so, replace it with a priority queue.

Okay, and to implement this?

Our sorted list is slow; so, replace it with a priority queue.

We need a way of “changing the priority of an element”

Okay, and to implement this?

Our sorted list is slow; so, replace it with a priority queue.

We need a way of “changing the priority of an element”

Remember, decreaseKey? That's exactly what it does!

To make that work, we need to store a reference to the index/vertex in
some dictionary.

Final Dijkstra’s Algorithm 7

dijkstra(G, source) {
dist = new Dictionary();
worklist = [];
for (v : V) {
if (v == source) { dist[v] = 0; }
else { dist[v] =
worklist.add((v, dist[v]));

N
3“”

i}

dist[v] +

1
2
3
4
)
6
7
8
9
10
11
12
13 o
14 g, dist[ul);
15
16
17
18

return dist;
19 }

Example 3

