Adam Blank Lecture 21 Winter 2016

Data Abstractions



CSE 332: Data Abstractions
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Some Initial Thoughts




The Idea 2

We will run a simulation of (infinitely many) ants expﬁfl‘oring the graph. K

The ants all move at identical speeds.

We're interested in the time step that some ant first reaches each vertex

At each step. ..

The ants try to move along some new edge
We “process” a vertex at the timestep that an ant arrives there
When an ant arrives, they dispatch new ants to every out-edge

We're done!
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The Algorithm
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dijkstra(G, source) =
// We will use a Q as our worklist, because the items
// in the work list areTevents" which are processed in order

/L (v, timestep) In worklist, where v is a vertex and timestep
// T 3 i : g4

worklist = [];

// All the ants begin at vertex v at time step zero
worklist.add((source, 0))z

worklist.has ne%{ \:\/&\\N’Q’ (\MX QM\(\'

v, time_to_v) =

// Since a cluster of ants got to v, we dispatch new ants
for (u : v.neighbors()) {

// When does Us u? How does it change?
(u, time_to_uN=%worklist. get(u), ;;L"_‘
// w(v, u) is the e i om v to u

time_from_v_to_u = w(v, u);
to_u = min(time_to_u, time_to_v + time_from_v_to_u);
worklist.add((u, to_u));
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Example 2
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Okay, and to implement this?

Our sorted list is slow; so, replace it with a priority queue.
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Okay, and to implement this?

Our sorted list is slow; so, replace it with a priority queue.

We need a way of “changing the priority of an element”

Remember, decreaseKey? That's exactly what it does!

To make that work, we need to store a reference to the index/vertex in
some dictionary.



Final Dijkstra’s Algorithm 7

dijkstra(G, source) {
dist = new Dictionary();
worklist = [];
for (v : V) {
if (v == source) { dist[v] = 0; }
else { dist[v] =
worklist.add((v, dist[v]));
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return dist;
19 }



Example 3




