Adam Blank

Winter 2016

Lecture 21

Data Abstractions

The Idea

We will run a simulation of (infinitely many) ants exploring the graph.

The ants all move at identical speeds.

We're interested in the **time step** that some ant first reaches each vertex.

- At each step...
 - The ants try to move along some new edge
 - We "process" a vertex at the timestep that an ant arrives there
 - When an ant arrives, they dispatch new ants to every out-edge
- We're done!

worklist $\leftarrow \boxed{\mathsf{a} \leq 0} \leftarrow$

worklist
$$\leftarrow d \le 4$$
 $e \le 12$ \leftarrow

worklist
$$\leftarrow \boxed{f \le 4 \mid e \le 10} \leftarrow$$

worklist
$$\leftarrow g \le 7$$
 $e \le 10$ \leftarrow

worklist $\leftarrow e \le 9 \leftarrow$

Example 3

Example 3


```
dijkstra(G, source)
 2
      // We will use a 'sorted list" as our worklist, because the items
 3
      // in the work list are "events" which are processed in order
 4
         (v, timestep) in worklist, where v is a vertex and timestep
6
      // is the "time" the first ant got there
      worklist = []; // These ants are "currently moving"
8
9
      // All the ants begin at vertex v at time step zero
10
      worklist.add((source, 0))
11
      while (worklist.haswork()) { habble next 9mf
12
13
14
15
         // Since a cluster of ants got to v, we dispatch new ants
16
         for (u : v.neighbors()) {
17
            // When does a cluster of ants get to u? How does it change?
18
            (u, time_to_u = worklist.get(u);
19
            // w(v, u) is the edge weight from v to u
20
            time_from_v_to_u = w(v, u);
21
            to_u = min(time_to_u, time_to_v + time_from_v_to_u);
22
            worklist.add((u, to_u)):
23
24
25
      return dist:
26 }
```

Example 2 5

 $\hfill \square$ Our sorted list is slow; so, replace it with a \hfill queue.

- Our sorted list is slow; so, replace it with a priority queue.
- We need a way of "changing the priority of an element"

- Our sorted list is slow; so, replace it with a priority queue.
- We need a way of "changing the priority of an element"

Remember, decreaseKey? That's exactly what it does!

To make that work, we need to store a reference to the index/vertex in some dictionary.

```
dijkstra(G, source) {
      dist = new Dictionary();
      worklist = [];
      for (v : V) {
 4
 5
          if (v == source) { dist[v] = 0; }
 6
          else
                            \{ dist[v] = \infty; \}
          worklist.add((v, dist[v]));
8
9
10
     while (worklist.hasWork)) {
11
         → = next();
12
       for (u : v.geighbors())
             dist[u] = min(dist[u], dist[v] + v(v, u));
13
14
             worklist.decreaseKey(x, dist[u]);
15
16
17
18
       return dist;
19
```

Example 3 8

