
Adam Blank Winter 2016Lecture 21

CSE332
Data Abstractions

CSE 332: Data Abstractions

Graphs 2:
Representing Graphs

Topological Sort

A Directed Graph is a Thingy. . . 1

a

V = {a}, E = ∅

b

c

V = {b,c},
E = {(b,c)}

f

e d

V = {d,e, f},
E = {(f ,e),(f ,d)}

g

h

ij

V = {g,h, i, j},
E = {(g,h),(h, i),(g, j),(i,h),(j,h),(i, j)}

Let’s extend our terminology for directed graphs!

More Graphs 2

A Lonely Graph
a

b

cd

Complete Directed Graph
a

b

cd

Some Questions
How many edges can a directed graph with ∣V ∣ = n have?

∣E ∣ = n(n−1)
How many edges can a directed graph with ∣V ∣ = n and possible
loops have? ∣E ∣ = n2

New Terminology: Degree 3

h b a

d

c

e

f

g

Definition (Degree)
The degree of a vertex in a graph is the number of vertices adjacent to
it. In the above graph, we have:

a b c d e f g h

3 2 3 2 3 1 1 1

Burgers? Now? 4

h b a

d

c

e

f

g

Definition (In & Out Degree)
The in-degree of a vertex, v, in a graph is ∣{(x,v) ∣ (x,v) ∈ E,x ∈V}∣.
The out-degree of a vertex, v, in a graph is ∣{(v,x) ∣ (x,v) ∈ E,x ∈V}∣.

a b c d e f g h

In-Degree 1 2 2 1 0 1 1 0

Out-Degree 2 0 1 1 3 0 0 1

Re-examining Paths and Cycles on Directed Graphs 5

Paths?
1

2

3

4 6

5

7

8

Cycle

1

2

3

4 6

5

7

8

Making A Connection! 6

Definition (Strongly Connected Directed Graph)
We say a directed graph is strongly connected iff for every pair of
vertices, u,v ∈V , there is a path from u to v.

1

2

3

4 6

5

7

8

Strongly Connected! Not Strongly Connected!

Definition (Weakly Connected Directed Graph)
We say a directed graph is weakly connected iff the underlying
undirected graph is connected.

That is, if we “undirected the edges”, if the graph is connected, then the
digraph is weakly connected.

Graph Data Structures 7

a

b c

d

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b Ð→ c Ð→
b: a Ð→ c Ð→
c: a Ð→ b Ð→ d Ð→
d: c Ð→

Adjacency Matrix Analysis 8

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b Ð→ c Ð→
b: a Ð→ c Ð→
c: a Ð→ b Ð→ d Ð→
d: c Ð→

Adjacency Matrix Properties
How long to. . .

Get a vertex’s out-edges? O(∣V ∣)
Get a vertex’s in-edges? O(∣V ∣)
Check if an edge exists? O(1)
Insert an edge? O(1)
Delete an edge? O(1)

Space Requirements: O(∣V ∣2)
Adjacency Matrices are reasonable for dense graphs, but not otherwise.

Adjacency List Analysis 9

Adjacency Matrix
a b c d

a 0 1 1 0
b 1 0 1 0
c 1 1 0 1
d 0 0 1 0

Adjacency List

a: b Ð→ c Ð→
b: a Ð→ c Ð→
c: a Ð→ b Ð→ d Ð→
d: c Ð→

Adjacency List Properties
How long to. . .

Get a vertex’s out-edges? O(d)
Get a vertex’s in-edges? O(∣E ∣)

To fix this, keep a second adjacency list going the other way
Check if an edge exists? O(d)
Insert an edge? O(1)
Delete an edge? O(d)

Space Requirements: O(∣V ∣+ ∣E ∣)
Adjacency Lists should be your goto choice.

Directed Acyclic Graphs: DAGs 10

Definition (DAG)
A DAG is a directed, acyclic graph.

a

b c

d e f g

h i

j

By “acyclic”, we mean in the directed sense.

DAGs vs. Trees?
Is there a tree that isn’t a DAG? Is there a DAG that isn’t a tree?

Directed Acyclic Graphs: DAGs 11

DAGs vs. Trees?
All trees are DAGs (remember, trees must be acyclic and connected!).

Not all DAGs are trees. See previous slide. Also, DAGs don’t have to be
connected!

Why DAGs?
They come up a lot in practice. Cycles can be icky. Examples:

Any sort of scheduling problem (scheduling your courses, scheduling
fork-join threads, . . .)
Causal Structures (Baysian Networks)
Genealogy
. . .

Topological Sort 12

Topological Sort
Given a DAG (G = (V,E)), output all the vertices in an order such that
no vertex appears before any vertex that has an edge to it.

“Output an order to process the graph that meets all dependencies”

This is how we can allocate work in the ForkJoin model!

T1

T2 T3

T4 T5 T6 T7

T8 T9

T10

Topological Sort 13

How Many Valid Topological Sorts?
T1

T2 T3

T4 T5 T6 T7

T8 T9

T10

T1,T2,T3,T4,T5,T6,T7,T8,T9,T10

T1,T2,T4,T3,T5,T6,T7,T8,T9,T10

T1,T2,T5,T4,T3,T6,T7,T8,T9,T10

T1,T3,T6,T7,T9,T2,T5,T4,T8,T10

. . .

An Idea 14

Implementing Topological Sort
Throw all the in-degrees in a priority queue. removeMin() repeatedly.

This works, but it’s too slow.
Insight: PriorityQueues must deal with negative numbers;
indegree will never be negative!
Instead: Split ready vs. not ready (0 vs. non-zero) sets
The “ready set” is a worklist!

Setup
1 output = []
2 deps = {}
3 worklist = []
4 for (v : vertices) {
5 deps[v] = in−degree(v);
6 if (deps[v] == 0) {
7 worklist.add(v);
8 }
9 }

Do Work
1 while (worklist.hasWork()) {
2 v = worklist.next();
3 output.add(v);
4 for (w : neighbors(v)) {
5 deps[w] −= 1
6 if (deps[w] == 0) {
7 worklist.add(w);
8 }
9 }

10 }

Topologically Sorting A DAG (with a Queue) 15

worklist ← worklist ←Ð T1 T8 T10 ←Ðworklist ←Ð T8 T10 ←Ðworklist ←Ð T8 T10 T3 ←Ð
worklist ←Ð T10 T3 ←Ðworklist ←Ð T3 ←Ðworklist ← worklist ←Ð T4 ←Ð

worklist ← worklist ←Ð T2 T5 ←Ðworklist ←Ð T5 ←Ðworklist ←Ð T5 T7 ←Ð
worklist ←Ð T7 ←Ðworklist ← worklist ←Ð T6 T9 ←Ðworklist ←Ð T9 ←Ð

worklist ←
T1

0

T2

210

T310

T4

10
T5210

T6

210

T7

210

T8

0

T9

3210

T10

0

output
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4 T2
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4 T2 T5
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4 T2 T5 T7
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4 T2 T5 T7 T6
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

output T1 T8 T10 T3 T4 T2 T5 T7 T6 T9
o[0] o[1] o[2] o[3] o[4] o[5] o[6] o[7] o[8] o[9]

Analyzing Topological Sort 16

What happens if there is a cycle?
Our worklist will be empty before we’ve processed all of the vertices.
(e.g., “there are no nodes ready to print next, but we haven’t gone
through all of them)
In this case: our algorithm should throw a “not a DAG exception”.

Runtime?
Setup: We follow every edge for every vertex: O(∣V ∣+ ∣E ∣)
We add/remove each vertex from the work list once: O(∣V ∣)
We decrement each indegree until zero (once for each edge): O(∣E ∣)
So, overall, it’s graph linear!

