Searching a Graph (with a Queue) 24

Any reason we shouldn’t use a Queue?

When we use a Queue:
L This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist [T]« iﬁ\ (‘N\u/ é"O\J J: i/) :9 ;

Searching a Graph (with a Queue)

Any reason we shouldn’t use a Queue?

When we use a Queue:
L This algorithm is caIIeH\BKS(breadth—first search)

2 We increase our horizon away from the starting node

worklist <—E]<— D)/‘S

24

Searching a Graph (with a Queue)

Any reason we shouldn't use a Queue? (CO(\’}]I\ V\)Qﬁ('
V

When we use a Queue:
L This algorithm is called BFS (breadth-first search)
2 We increase our horizon away from the starting node

worklist « , \BFS

24

BFS and DFS Trade-Offs 27

Trade-Offs
B DFS has better space usage, but it might find a circuitous path

® BFS will always find the shortest path te s iioce, but it wil! use more
memory

Iterative Deepening l.

Iterative Deepening is a DFS that bounds the depth:

int depth = 1;

while (there are nodes to explore) {
dfs(v, depth);
depth++;

s WN =

}

Since most of the vertices are “leaves”, this actually doesn't waste
much time!

Topological Sort 12

Topological Sort

Given a DAG (G = (V,E)), output all the vertices in an order such that
no vertex appears before any vertex that has an edge to it.

“Output an order to process the graph that meets all dependencies”

This is how we can allocate work in the ForkJoin model!

An ldea

Implementing Topological Sort

Throw all the in-degrees in a priority queue. removeMin() repeatedly.

® This works, but it's too slow.

B |nsight: PriorityQueues must deal with negative numbers;
indegree will never be negative!

® |nstead: Split ready vs. not ready (0 vs. non-zero) sets

B The “ready set” is a worklist!

Do Work
while (worklist.hasWork()) {
v = worklist.next();
output.add(v);
for (w : neighbors(v)) {
deps[w] —=1
if (deps[w] == 0) {
worklist.add(w);

output = []

deps = {}

worklist = []

for (v : vertices) {
deps[v] = in-degree(v);
if (deps[v] == 0) {

worklist.add(v);

}

O oO~NOOOTHWN -
O WOWNOOTDS WN -

[y

