

We call the circles vertices and the lines edges. $\{\{\infty\} \mid x \in V\}$ Definition (Graph)

$$
E=V \times V
$$

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

- Maps
- The Internet
- Social Networks
- A Running Program

A Chess Game

- Telephone Lines
- CSE Courses

With these in mind, let's talk about more crucial definitions.

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

- Maps

Vertices: regions; Edges: "is next to"

- The Internet

Vertices: websites; Edges: "has a link to"

- Social Networks

Vertices: people; Edges: "is friends with"

- A Running Program

Vertices: methods; Edges: "calls"

$$
\begin{aligned}
& f(x) \\
& f(x-1)
\end{aligned}
$$

A Chess Game

- Telephone Lines
- CSE Courses

With these in mind, let's talk about more crucial definitions.

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

- Maps

Vertices: regions; Edges: "is next to"

- The Internet

Vertices: websites; Edges: "has a link to"

- Social Networks

Vertices: people; Edges: "is friends with"

- A Running Program

Vertices: methods; Edges: "calls"

- A Chess Game

Vertices: boards; Edges: "can move to"

- Telephone Lines
- CSE Courses

With these in mind, let's talk about more crucial definitions.

Empty Graph

(a)

(d)
(b)

Complete Graph $\left(K_{n}\right)$

Some Questions

- How many edges can a graph with $|V|=n$ have?

- If we have $|E|=n$, what is the smallest number of vertices we can have? The largest?
- Smallest:
- Largest:

Definition (Walk)

A walk in a graph $G=(V, E)$ is a list of vertices:
$v_{0}, v_{1}, \ldots, v_{n}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$.
Intuitively, a path from u to v is a continuous line drawn without picking up your pencil.

Definition (Path)

A path in a graph $G=(V, E)$ is a walk with no repeated vertices.

Definition (Walk)

A walk in a graph $G=(V, E)$ is a list of vertices:
$v_{0}, v_{1}, \ldots, v_{n}$ such that $\left\{v_{i}, v_{i+1}\right\} \in E$.
Intuitively, a path from u to v is a continuous line drawn without picking up your pencil.

Definition (Cycle)

A cycle in a graph $G=(V, E)$ is a walk $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ with no repeated vertices except $v_{0}=v_{n}$.

Definition (Connected Graph)

We say a graph is connected if for every pair of vertices, $u, v \in V$, there is a path from u to v.

A very common type of algorithm on graphs is a worklist algorithm.
Recall the WorkList ADT:
WorkList ADT

add (v)	Notifies the worklist that it must handle v
next()	Returns the next vertex to work on
hasWork ()	Returns true if there's any work left and false other- wise

Importantly, we do not care how the worklist manages the work. (Okay, we do, but not when coming up with the algorithm.)

Worklist algorithms will always look like the following:
1 worklist = /* add initial work to worklist */
2 while (worklist.hasWork()) \{

3 v = worklist.next()
4 doWork(v);
5) \}

