
A Graph is a Thingy. . . 2

a

V = {a}, E =�

b

c

V = {b,c},
E = {{b,c}}

f

e d

V = {d,e, f},
E = {{e, f},{ f ,d}}

g

h

ij

V = {g,h, i, j},
E = {{x,y} � x,y ∈V ∧ x ≠ y}

We call the circles vertices and the lines edges.

Definition (Graph)
A Graph is a pair, G = (V,E), where:

V is a set of vertices, and
E is a set of edges (pairs of vertices).



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps

Vertices: regions; Edges: “is next to”

The Internet

Vertices: websites; Edges: “has a link to”

Social Networks

Vertices: people; Edges: “is friends with”

A Running Program

Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CSE Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game

Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CSE Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



Modelling Problems with Graphs 13

To model a problem with a graph, you need to make two choices
1 What are the vertices?
2 What are the edges?

Maps
Vertices: regions; Edges: “is next to”

The Internet
Vertices: websites; Edges: “has a link to”

Social Networks
Vertices: people; Edges: “is friends with”

A Running Program
Vertices: methods; Edges: “calls”

A Chess Game
Vertices: boards; Edges: “can move to”

Telephone Lines

Vertices: houses; Edges: “telephone line between”

CSE Courses

Vertices: courses; Edges: “is a pre-requisite of”

With these in mind, let’s talk about more crucial definitions.



More Important Graphs 14

Empty Graph
a

b

cd

�
Complete Graph (K

n

)
a

b

cd

Some Questions
How many edges can a graph with �V � = n have?

�E � = �n
2
� = n(n−1)

2

If we have �E � = n, what is the smallest number of vertices we can
have? The largest?

Smallest:

v(v−1)
2

= n �⇒ v

2−v = n ∈O(√n)

Largest:

There is no largest!



Walks and Paths 15

Definition (Walk)
A walk in a graph G = (V,E) is a list of vertices:
v0,v1, . . . ,vn

such that {v
i

,v
i+1} ∈ E.

Intuitively, a path from u to v is a continuous line drawn without picking
up your pencil.

Definition (Path)
A path in a graph G = (V,E) is a walk with no repeated vertices.

1

2

3

4 6

5

7

8

The blue edges are a path The red edges are a walk but not a path



Walks and Cycles 16

Definition (Walk)
A walk in a graph G = (V,E) is a list of vertices:
v0,v1, . . . ,vn

such that {v
i

,v
i+1} ∈ E.

Intuitively, a path from u to v is a continuous line drawn without picking
up your pencil.

Definition (Cycle)
A cycle in a graph G = (V,E) is a walk (v0,v1, . . . ,vn

) with no repeated
vertices except v0 = v

n

.

1

2

3

4 6

5

7

8

The blue edges are a cycle The red edges are not a cycle



Making A Connection! 17

Definition (Connected Graph)
We say a graph is connected if for every pair of vertices, u,v ∈V , there is
a path from u to v.

Intuitively, if we pick up the graph and shake it around, if anything isn’t
still in the air, then the graph isn’t connected.

1

2

3

4 6

5

7

8

Connected! Not Connected!



A “Worklist” 19

A very common type of algorithm on graphs is a worklist algorithm.

Recall the WorkList ADT:

WorkList ADT
add(v) Notifies the worklist that it must handle v
next() Returns the next vertex to work on
hasWork() Returns true if there’s any work left and false other-

wise

Importantly, we do not care how the worklist manages the work.
(Okay, we do, but not when coming up with the algorithm.)

Worklist algorithms will always look like the following:
1 worklist = /* add initial work to worklist */
2 while (worklist.hasWork()) {
3 v = worklist.next();
4 doWork(v);
5 }


