

Data Abstractions

CSE 332: Data Abstractions

Dictionaries \& Trees

- You did something substantial!
- You worked with "real world software"
- You honed your debugging skills
- You "transitioned" from 143 to 332
- You enjoyed it?? (okay, not the debugging, but. . .)

Oh, some presents...

- tokens++

EX06, EX07, EX08 Now Due Thursday

While we're here. . .

- Proofs review session?

Overwhelmed?

Outline

1 Dictionaries \& Sets

2 Vanilla BSTs

ADT's So Far

Where We've Been So Far

- Stack (Get LIFO)
- Queue (Get FIFO)
- Priority Queue (Get By Priority)

Today, we begin discussing Maps. This ADT is hugely important.

A New ADT: "Dictionaries" (Also called "Maps")

Dictionary ADT

Data	Set of (key, value) pairs
insert(key, val)	Places (key, val) in map (overwrites existing val entry)
find(key)	Returns the val currently associated to key
delete(key)	deletes any pair relating key from the map

find("such strings") $\rightarrow 12$

Dictionaries are the more general structure, but, in terms of implementation, they're nearly identical.

In a Set, we store the key directly, but conceptually, there's nothing different in storing an Item:
class Item \{
Data key;
Data value;
\}
The Set ADT usually has our favorite operations: intersection, union, etc.
Notice that union, intersection, etc. still make sense on maps!
As always, depending on our usage, we might choose to add/delete things from out ADT.

Bottom Line: If we have a set implementation, we also have a valid dictionary implementation (and vice versa)!

It turns out dictionaries are super useful. They're a natural generalization of arrays. Instead of storing data at an index, we store data at anything.

Networks: router tables

- Operating Systems: page tables
- Compilers: symbol tables
- Databases: dictionaries with other nice properties
- Search: inverted indexes, phone directories, . . .

Biology: genome maps

Dictionary Implementations, Take \# 1

For each of the following potential implementations, what is the worst case runtime for insert, find, delete?

- Unsorted Array
- Unsorted Linked List
- Sorted Linked List
- Sorted Array List

For each of the following potential implementations, what is the worst case runtime for insert, find, delete?

- Unsorted Array

Insert by searching for existence and inserting which is $\mathcal{O}(n)$
Find by linear search which is $\mathcal{O}(n)$
Delete by linear search AND shift which is $\mathcal{O}(n)$

- Unsorted Linked List

Insert by searching for existence and inserting which is $\mathcal{O}(n)$
Find by linear search which is $\mathcal{O}(n)$
Delete by linear search AND shift which is $\mathcal{O}(n)$

- Sorted Linked List

Insert by searching for existence and inserting which is $\mathcal{O}(n)$
Find by linear search which is $\mathcal{O}(n)$
Delete by linear search AND shift which is $\mathcal{O}(n)$

- Sorted Array List

Insert by binary search AND shift which is $\mathcal{O}(n)$
Find by binary search which is $\mathcal{O}(\lg n)$
Delete by binary search AND shift which is $\mathcal{O}(n)$

It turns out there are many different ways to do much better.
But they all have their own trade-offs!

So, we'll study many of them:

- "Vanilla BSTs" - today (vanilla because they're "plain")
- "Balanced BSTs" - there are many types: we'll study AVL Trees
- "B-Trees" - another strategy for a lot of data
- "Hashtables" - a completely different strategy (lack data ordering)
- We already saw another strategy: the amortized array dictionary

Binary Search is great! It's the only thing that was even sort of fast in that table. But insert and delete are really bad into a sorted array. Store the data in a structure where most of the data isn't accessed.

Interestingly, this is very similar to what made heaps useful!
To put it another way, by storing the data in an array, we're paying for the constant-time access that we're never even using!

It's okay that it takes more time to access certain elements.
... as long as it's never too bad.
Definition (Vanilla BST)
A binary tree is a BST when an in-order traversal of the tree yields a sorted list.

To put it another way, a binary tree is a BST when:

- All data "to the left of" a node is less than it
- All data "to the right of" a node is greater than it
- All sub-trees of the binary tree are also BSTs

Example (Which of the following are BSTs?)

BST Properties

Structure Property:

0,1 , or 2 children

BST Property:

Keys in Left Subtree are smaller Keys in Right Subtree are larger

Definition (Height)

The height of a binary tree is the length of the longest path from the root to a leaf.

- Height of an empty tree? -1
- Height of \otimes ? 0
height

1 private int height(Node current) \{
2 if (current == null) \{ return -1; \}
3 return $1+$ Math.max(height(current.left), height(current.right));
4 \}

Height
private int height(Node current) \{ if (current == null) \{ return -1 ; \}
return 1 + Math.max(height(current.left), height(current.right));
\}
Given that a tree has height $h .$. .

- What is the maximum number of leaves?

What is the maximum number of nodes?
What is the minimum number of leaves?
What is the minimum number of nodes?

That's a big spread!

This confirms what we already know: height in a tree has a big impact on runtime.

Height
private int height(Node current) \{ if (current == null) \{ return -1 ; \}
return 1 + Math.max(height(current.left), height(current.right));

Given that a tree has height $h .$. .

- What is the maximum number of leaves? 2^{h}
- What is the maximum number of nodes? $2^{h+1}-1$

What is the minimum number of leaves? 1

- What is the minimum number of nodes? $h+1$

That's a big spread!

This confirms what we already know: height in a tree has a big impact on runtime.

Recursive find


```
Data find(Key key, Node curr) {
    if (curr == null) { return null; }
    if (key < curr.key) {
        return find(key, curr.left);
    }
    if (key > curr.key) {
        return find(key, curr.right);
    }
    return curr.data;
}
```


Iterative find

```
Data find(Key key) {
    Node curr = root;
    while (curr != null && curr.key != key) {
        if (key < curr.key) {
        curr = curr.left;
        }
        else (key > curr.key) {
            curr = curr.right;
        }
    }
    if (curr == null) { return null; }
    return curr.data;
}
```


insert

- find
- create a new node

How about delete?

Consider the following tree:

Let's try the following removals:
tree.delete (2)
tree.delete(1)
tree.delete (7)
tree.delete(5)

delete from a BST

delete from a BST

delete(x)

- Case 1: x is a leaf
- Just delete x
- Case 2: x has one child
- Replace x with its child
- Case 3: x has two children
- Replace x with the successor or predecessor of x

The tricky case is when x has two children. If we think of the BST in sorted array form, to get the successor, we findMin(right subtree) (or predecessor is findMax(left subtree))

Instead of doing this complicated algorithm, here's an idea:
Mark the node as "deleted" instead of doing anything
lazyDelete(5)

Then, insert and find change slightly, but the whole thing is much simpler.

This "lazy deletion" is a very useful strategy!

Psuedocode

```
void buildTree(int[] input) {
    for (int i = 0; i < input.length; i++) {
        insert(input[i]);
    }
}
```

What's the best case? The worst case?
The worst case is a sorted input which is $\mathcal{O}\left(n^{2}\right)$. Ouch.

The Good News
On average, we get $\mathcal{O}(\lg n)$ height (see textbook for proof). But we want it to always be $\mathcal{O}(\lg n)$ height. . .

The Solution

Add restrictions on the height of the tree. Somehow, the tree should "fix itself" so it never has too large a height.
We call this condition a Balance Condition.

Ideas?

- Left and right subtrees of the root have the same number of nodes
- Left and right subtrees of the root have the same height

These ideas suffer from the same problem:
They're local conditions rather than global ones.

Ideas?

- Left and right subtrees $\phi \phi / / \phi / \phi \phi / x \phi / \phi t$ recursively have the same number of nodes
- Left and right subtrees $\phi f / t / \hbar / \phi / \phi \phi \phi \phi t /$ recursively have the same height

These ideas suffer from the same problem:
They're way too strong. Only perfect trees satisfy them.

AVL Balance Condition!

Left and right subtrees recursively have heights differing by at most one.

Definition (balance)
balance $(\mathrm{n})=\operatorname{abs}($ height $(\mathrm{n}$. left $)-$ height $(\mathrm{n} . \mathrm{right}))$
Definition (AVL Balance Property)
An AVL tree is balanced when:

$$
\text { For every node } n \text {, balance }(n) \leq 1
$$

- This ensures a small depth (we'll prove this next time)
- It's relatively easy to maintain (we'll see this next time)

