CSE 332

Data Abstractions
B-Trees
1. A New Model For Time Complexity

2. M-ary Search Trees

3. B-Trees
A New Model?

We’ve been assuming that all memory accesses are the same. In practice, this isn’t true. The memory hierarchy looks something like this:

- **Registers**: 128B = 2^4
- **L1 Cache**: 128KB = 2^17
 - Fetch from L1 Cache: 0.5 nanoseconds
- **L2 Cache**: 2MB = 2^21
 - Fetch from L2 Cache: 7 nanoseconds
- **Main Memory**: 16GB = 2^34
 - Fetch from Main Memory: 100 nanoseconds
- **Disk**: 1TB = 2^40
 - Fetch from Disk: 8,000,000 nanoseconds

The take-away is that disk accesses are very expensive.
A New Model?

Why do we care how the machine works?

Big-Oh is just an abstraction that says “all memory fetches are equal”... but in practice, some memory fetches are more equal than others. (The disk is prohibitively slow.)

AVL Trees: Big-Oh vs. Practice

We’ve seen that AVL Trees are $O(\lg n)$ which is great, but what if we account for disk accesses?

Consider an AVL Tree of height 40 where each node is b bytes.

- How many nodes in the tree? $\lg n = 40 \rightarrow n = 2^{40}$. So, we need about b terabytes for the tree. This means an overwhelming majority is on the disk.

- How many disk accesses does a find take? It could take none (3 nanoseconds) or it could take 40 (0.3 seconds). That’s a difference of: 100,000,000

If the data structure is mostly on disk, yes, we still need a data structure that is $O(\lg n)$, but it’s not enough anymore!
Problem
A dictionary with so much data most of it is on disk

Goal
A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size

The Idea
Increase the branching factor of our tree
Like a binary tree, but with M branches instead of two.

M-ary Search Tree Properties

- Height (if balanced)? $O(\log_M(n))$
- Ordering Property?
 - Binary Tree: smaller on the left, larger on the right
 - M-ary Tree: split the range into M equal sized groups
- Runtime of find (if balanced)? $O(h \lg M) = O(\log_M(n) \lg M)$
 - h possible nodes to visit: $\log_M(n)$
 - **Binary Search** on each node: $\lg M$
Good start, but...

M-ary Search Tree Example?

Some Questions

- What should the order property be?
- How would re-balancing work? We DON’T want to do more disk accesses!

Some Thoughts

- We will have to load the values (e.g., fruits) for all the internal nodes. This is very wasteful!
- Usually we are just “passing through” a node on the way to the value we are actually looking for.
B-Trees

Two Types of Nodes

Internal Nodes

("sign posts")

K K K K K

An internal node has $M - 1$ sorted keys and M pointers to children

Leaf Nodes

("real data")

K,V K,V K,V

A leaf node has L sorted key/value pairs

B-Tree Order Property

Subtree between a and b contains all data x where $a \leq x < b$
First, choose $M > 2$ and any L. (Here $M = 4, L = 5$.)

Very Few Nodes

If $n \leq L$, the ROOT is a LEAF:

Otherwise, the root must have between 2 and M children.

B-Tree Example

Internal Nodes must have between $\left\lceil \frac{M}{2} \right\rceil$ and M children (i.e., half full).

Leaf Nodes must have between $\left\lfloor \frac{L}{2} \right\rfloor$ and L children (i.e., half full).
Balanced Enough!

Let \(M > 2 \). Since all nodes are at least half full (ignoring the root), we have:

\[
2 \left\lceil \frac{M}{2} \right\rceil^{h-1} \text{ leaves, and each leaf has at least } \left\lceil \frac{L}{2} \right\rceil \text{ data items}
\]

So, \(n \geq 2 \left\lceil \frac{M}{2} \right\rceil^{h-1} \times \left\lceil \frac{L}{2} \right\rceil \). So, the height \(h \) is logarithmic in the number of data items \(n \).
B-Tree Insertion (Continued)

1. \(\text{insert(16)} \) → \text{SPLIT}

2. \(\text{insert(16)} \) → \text{SPLIT}

3. \(\text{insert(16)} \) → \text{NEW ROOT}
insert(12), insert(40), insert(45), insert(38)

Always fill the “signpost” with the smallest value to my right!
Insertion Algorithm

- Insert the data in the correct leaf **in sorted order**.

- If the leaf has $L + 1$ items, overflow:
 - Split the leaf into two new nodes:
 - Original leaf with $\left\lfloor \frac{L+1}{2} \right\rfloor$ smaller items
 - New leaf with $\left\lfloor \frac{L}{2} \right\rfloor$ larger items
 - Attach the new child to the parent
 - Add the new key to the parent in sorted order

- Recursively continue overflowing if necessary. Noting that on the internal nodes we split using M instead of L.

- In the case where the **root** overflows, make a new root.
Efficiency of Insert

How Efficient is Insert?

- Find the correct leaf: $O(\lg(M)\log_M(n))$
- Insert in the leaf: $O(L)$
- Split leaf: $O(L)$
- Split parents all the way up to the root: $O(M\log_M(n))$

In total, this gives us $O(L + M\log_M(n))$.

But It’s Actually Pretty Good!

- Splits are very uncommon (think amortized analysis)
- Splitting the root almost never happens
- We’re significantly more concerned about disk accesses than anything else: $O(\log_M(n))$
B-Tree Deletion

```
<table>
<thead>
<tr>
<th>15</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

delete(32)

<table>
<thead>
<tr>
<th>15</th>
<th>32</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>30</td>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>18</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

Fix Internal

<table>
<thead>
<tr>
<th>15</th>
<th>36</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>38</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>32</th>
<th>18</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>36</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>36</th>
<th>18</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>36</td>
<td>45</td>
</tr>
</tbody>
</table>
```
B-Tree Deletion (Continued)

delete(32) →

This breaks our invariant.
Leaves must have more than one node!
B-Tree Deletion (Continued)

delete(15) →

Adopt Neighbor’s Child!
B-Tree Deletion (Continued)

This time, we can’t adopt. (We’d break another invariant.) The solution is to adopt recursively.
B-Tree Deletion (Continued)

delete(14) →

delete(18) →
B-Tree Deletion (Continued)

delete(18) →

Merge!
Deletion Algorithm

- Remove the data from correct leaf.

- If the leaf has \(\left\lceil \frac{L}{2} \right\rceil - 1\) items, underflow:
 - If a neighbor has more than \(\left\lfloor \frac{L}{2} \right\rfloor\), adopt one!
 - Otherwise, **merge** with a neighbor (parent will now have one fewer node)

- Recursively continue underflowing if necessary. Noting that on the internal nodes we split using \(M\) instead of \(L\).

- If we merge all the way up to the root and the root went from 2 → 1 children, then delete the root and make the child the root.
How Efficient is Delete?

- Find the correct leaf: $\mathcal{O}(\lg(M) \log_M(n))$
- Remove from the leaf: $\mathcal{O}(L)$
- Adopt/Merge with neighbor: $\mathcal{O}(L)$
- Merge parents all the way up to the root: $\mathcal{O}(M \log_M(n))$

In total, this gives us $\mathcal{O}(L + M \log_M(n))$.

But It’s Actually Pretty Good!

- Merges are very uncommon (think amortized analysis)
- We’re significantly more concerned about disk accesses than anything else: $\mathcal{O}(\log_M(n))$
What makes B-Trees so disk friendly?

- Many keys stored in one internal node: all brought into memory in one disk access
- Makes the binary search over $M - 1$ keys totally worth it (insignificant compared to disk access times)
- Internal nodes contain only keys (it’s a waste to load all the values)

We take advantage of the choice of M and L to ensure good behavior!
Choosing M and L

We want each of M and L to fit as best as possible in the page size.

Say we know the following:
- 1 page on disk is p bytes
- Keys are k bytes
- Pointers are t bytes
- Key/Value pairs are v bytes

Then, we should choose the following:
- $p \geq M \times (\text{size of a pointer}) + (M - 1) \times (\text{size of a key}) = Mt + (M - 1)k$. So, $M = \left\lfloor \frac{p + k}{t + k} \right\rfloor$.
- $p \geq L \times v$. So, $L = \left\lfloor \frac{p}{v} \right\rfloor$.
Balanced trees make good dictionaries because they guarantee logarithmic-time find, insert, and delete

- Essential and beautiful computer science

- But only if you can maintain balance within the time bound

- **AVL Trees** maintain balance by tracking height and allowing all children to differ in height by at most 1

- **B-Trees** maintain balance by keeping nodes at least half full and all leaves at same height

- Other great balanced trees (see text; worth knowing they exist)
 - Red-black trees: all leaves have depth within a factor of 2
 - Splay trees: self-adjusting; amortized guarantee; no extra space for height information