Adam Blank Lecture 9 Winter 2016

335

Data Abstractions

A New Model For Time Complexity
M-ary Search Trees

B-Trees

A New Model? 2

Why do we care how the machine works?

Big-Oh is just an abstraction that says “all memory fetches are
equal”. .. but in practice, some memory fetches are more equal than
others. (The disk is prohibitively slow.)

AVL Trees: Big-Oh vs. Practice

We've seen that AVL Trees are O(lgn) which is great, but what if we
account for disk accesses?
Consider an AVL Tree of height 40 where each node is b bytes.
® How many nodes in the tree? 1gn=40»>n= 240 So, we need about
b terabytes
for the tree. This means an overwhelming majority is on the disk.

m How many disk accesses does a find take? It could take none (3
nanoseconds) or it could take 40 (0.3 seconds). That's a

difference of: 100,000,000

If the data structure is mostly on disk, yes, we still need a data structure
that is O(lgn), but it’s not enough anymore!

CSE 332: Data Abstractions

B-Trees
gEaa

A New Model? 1

We've been assuming that all memory accesses are the same. In
practice, this isn't true. The memory hierarchy looks something like this:

Registers
1288 = 2*

L1 Cac
128KB = 27

L2 Cache:
2MB = 2%

Fetch from Register: “free”

Fetch from L1 Cache:
0.5 nanoseconds

Fetch from L2 Cache:
7 nanoseconds

Fetch from Main Memory:

. . _ o34
BN S EITERR HYEiSos 100 nanoseconds

Fetch from Disk:
8,000,000 nanoseconds

Disk: 1TB = 240

The take-away is that disk accesses are very expensive.

Problem

A dictionary with so much data most of it is on disk

Goal

A balanced tree (logarithmic height) that is even shallower than AVL
trees so that we can minimize disk accesses and exploit disk-block size

The Idea

Increase the branching factor of our tree

M-ary Search Tree 4

M-ary Search Tree

Like a binary tree, but with M branches instead of two.

M-ary Search Tree Properties

m Height (if balanced)? O(log,,(n))
m Ordering Property?
m Binary Tree: smaller on the left, larger on the right
m M-ary Tree: split the range into M equal sized groups

m Runtime of f£ind (if balanced)? O(hlgM) = O(log,,(n)lgM)
m) possible nodes to visit: log,,(n)
m Binary Search on each node: IgM

Two Types of Nodes

Leaf Nodes
(“real data”)

Internal Nodes
(“sign posts")

An internal node has M -1 sorted
keys and M pointers to children

A leaf node has L sorted
key/value pairs

B-Tree Order Property

x<3 3<x<7 T<x<12 12<x<21 x>21
Subtree between a and b contains all data x where a<x<b

B-Tree Find 8

Find
, £ind (39)

Balanced Enough!

Let M >2. Since all nodes are at least half full (ignoring the root), we
have:

Mt L
2[5] leaves, and each leaf has at least [5] data items

ML
So, n> 2[5] X [5} So, the height 4 is logarithmic in the number of

data items n.

Good start, but. .. 5

M-ary Search Tree Example?

[30."apple” [41, “banana”[80, "grape’ |

[10."strbry"]20, "hnydw"[40,“wtrmin"] [45, "rspbry"[55,"cherry” [62,"blcbry"] [8L,"pear[84,"cntlpe" [99,"pch’]

Some Questions
m What should the order property be?

m How would re-balancing work? We DON’T want to do more disk
accesses!

Some Thoughts
m We will have to load the values (e.g., fruits) for all the internal
nodes. This is very wasteful!
m Usually we are just “passing through” a node on the way to the
value we are actually looking for.

B-Tree Structure Property

First, choose M >2 and any L. (Here M =4,L=5.)

Very Few Nodes
If n<L, the ROOT is a LEAF:

Otherwise, the root must have between 2 and M children

B-Tree Example

Internal Nodes must have between [%] and M children (i.e., half full).

Leaf Nodes must have between [%] and L children (i.e., half full).

B-Tree Insertion]

3
insert(3) . insert (18) insert(14)

—_—
B] SPLIT

insert (32) insert (36)
SPLIT
insert (15) w
- SPLIT

B-Tree Insertion (Continued) 10

insert (16)

B
SPLIT

insert (16) insert (16)

e _—
SPLIT NEW

ABOVE ROOT

Insertion Algorithm 12

m Insert the data in the correct leaf in sorted order.

m If the leaf has L+ 1 items, overflow:
m Split the leaf into two new nodes:
L+1

m Original leaf with [] smaller items

L
m New leaf with [El larger items

m Attach the new child to the parent

m Add the new key to the parent in sorted order

m Recursively continue overflowing if necessary. Noting that on the
internal nodes we split using M instead of L.

m In the case where the root overflows, make a new root.

B-Tree Insertion (Continued)

insert(12), insert(40), insert(45), insert(38)

Always fill the “signpost” with the smallest value to my right!

B-Tree Deleti

Fix Internal
e

Efficiency of Insert

How Efficient is Insert?

m Find the correct leaf: O(1g(M)log,,(n))

m Insert in the leaf: O(L)

m Split leaf: O(L)

m Split parents all the way up to the root: O(Mlog,,(n))
In total, this gives us O(L+Mlog,,(n)).

But It's Actually Pretty Good!
m Splits are very uncommon (think amortized analysis)
m Splitting the root almost never happens

m We're significantly more concerned about disk accesses than
anything else: O(log,,(n))

B-Tree Deletion (Continued)

I

delete(15) 3
.

This breaks our invariant.
Leaves must have more than
one node!

B-Tree Deletion (Continued)

40 delete(15) Fl%]
—_—

Adopt
Neighbor's
Child!

16

B-Tree Deletion (Continued)

delete(14)
—

delete(18)
—

Deletion Algorithm

m Remove the data from correct leaf.

m [f the leaf has [%] —1 items, underflow:

m If a neighbor has more than [%} adopt one!

m Otherwise, merge with a neighbor (parent will now have one fewer
node)

m Recursively continue underflowing if necessary. Noting that on the
internal nodes we split using M instead of L.

m |f we merge all the way up to the root and the root went from 2 - 1
children, then delete the root and make the child the root.

20

B-Tree Deletion (Continued) 17
3 14 18 36
This time, we can't adopt.
I I A (We'd break another in-
variant.) The solution is
to adopt recursively.
36
Adopt Adopt
Neighbor's Neighbor's
Child! Child!
B-Tree Deletion (Continued) 19
delete(18)
_—
Merge!
Efficiency of Delete 21

How Efficient is Delete?

m Find the correct leaf: O(1g(M)log,,(n))

m Remove from the leaf: O(L)

m Adopt/Merge with neighbor: O(L)

m Merge parents all the way up to the root: O(Mlog,,(n))
In total, this gives us O(L+Mlog,,(n)).

But It's Actually Pretty Good!
m Merges are very uncommon (think amortized analysis)

m We're significantly more concerned about disk accesses than
anything else: O(log,,(n))

Disk Friendlyness

What makes B-Trees so disk friendly?

m Many keys stored in one internal node: all brought into memory in
one disk access

m Makes the binary search over M -1 keys totally worth it
(insignificant compared to disk access times)

m Internal nodes contain only keys (it's a waste to load all the values)

We take advantage of the choice of M and L to ensure good behavior!

Choosing M and L

We want each of M and L to fit as best as possible in the page size.

Say we know the following:
m 1 page on disk is p bytes
m Keys are k bytes
m Pointers are ¢ bytes
m Key/Value pairs are v bytes

Then, we should choose the following:

m p>M x(size of a pointer) + (M —1) x (size of a key) =Mt+(M—1)k.

p+kJ
So, M=—|.
© Lﬁ-k
)4

m p>Lxv. So, L:\‘fJ.
v

Wrap-Up

Balanced trees make good dictionaries because they guarantee
logarithmic-time find, insert, and delete

m Essential and beautiful computer science

But only if you can maintain balance within the time bound

m AVL Trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

m B-Trees maintain balance by keeping nodes at least half full and all
leaves at same height

Other great balanced trees (see text; worth knowing they exist)

m Red-black trees: all leaves have depth within a factor of 2

m Splay trees: self-adjusting; amortized guarantee; no extra space for
height information

