Adam Blank

Winter 2016

332

Lecture 6a

Data Abstractions

More Recurrences

$$T(n) = \begin{cases} d_0 & \text{if } n = 0\\ c_0 + c_1 n + T(n-1) & \text{otherwise} \end{cases}$$

$$T(n) = (c_0 + c_1 n) + T(n-1)$$

$$= (c_0 + c_1 n) + (c_0 + c_1 (n-1)) + T(n-2)$$

$$= (c_0 + c_1 n) + (c_0 + c_1 (n-1)) + (c_0 + c_1 (n-2)) + ... + (c_0 + c_1 (1)) + d_0$$

$$= \sum_{i=0}^{n-1} (c_0 + c_1 (n-i)) + d_0$$

$$= \sum_{i=0}^{n-1} c_0 + \sum_{i=0}^{n-1} c_1 (n-i) + d_0$$

$$= nc_0 + c_1 \sum_{i=1}^{n} i + d_0$$

$$= nc_0 + c_1 \left(\frac{n(n+1)}{2}\right) + d_0$$

$$= \mathcal{O}(n^2)$$

A recurrence where we solve some constant piece of the problem (e.g. "-1", "-2", etc.) is called a **Linear Recurrence**.

We solve these like we did above by **Unrolling the Recurrence**.

This is a fancy way of saying "plug the definition into itself until a pattern emerges".

Now, back to mergesort.

```
Merge Sort
```

First, we need to find the recurrence:

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

This recurrence isn't linear! This is a "divide and conquer" recurrence.

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

This time, there are multiple possible approaches:

Unrolling the Recurrence

$$T(n) = (c_2 + c_1 n) + 2(c_2 + c_1 n + 2T(n/4))$$

$$= (c_2 + c_1 n) + 2(c_2 + c_1 n + 2T(n/8))$$

$$= c_2 + 2c_2 + 4c_2 + \dots + \operatorname{argh} + \dots$$

This works, but I'd rarely recommend it.

Insight: We're **branching** in this recurrence. So, represent it as a tree!

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + c_1 n + 2T(n/2) & \text{otherwise} \end{cases}$$

Since the recursion tree has height $\lg(n)$ and each row does n work, it follows that $T(n) \in \mathcal{O}(n \lg(n))$.

Find A Big-Oh Bound For The Worst Case Runtime

```
sum(n) {
   if (n < 2) {
      return n;
   }
   return 2 + sum(n - 2);
}</pre>
```

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_0 & \text{if } n = 1 \\ c_0 + T(n-2) & \text{otherwise} \end{cases}$$

$$T(n) = c_0 + c_0 + \dots + c_0 + d_0$$
$$= c_0 \left(\frac{n}{2}\right) + d_0$$
$$= \mathcal{O}(n)$$

Find A Big-Oh Bound For The Worst Case Runtime

```
binarysearch(L, value) {
       if (L.size() == 0) {
3
4
5
6
7
8
9
10
          return false;
       else if (L.size() == 1) {
           return L[0] == value;
       else {
          int mid = L.size() / 2:
          if (L[mid] < value) {</pre>
              return binarvsearch(L.subList(mid + 1. L.size()). value);
          else {
14
              return binarysearch(L.subList(0, mid), value);
15
16
       }
17
```

$$T(n) = \begin{cases} d_0 & \text{if } n = 0 \\ d_1 & \text{if } n = 1 \\ c_0 + T(n/2) & \text{otherwise} \end{cases}$$

$$T(n) = egin{cases} d_0 & ext{if } n = 0 \ d_1 & ext{if } n = 1 \ c_0 + T(n/2) & ext{otherwise} \end{cases}$$

So,
$$T(n) = c_0(\lg(n) - 1) + d_1 = \mathcal{O}(\lg n)$$
.

Consider a recurrence of the form:

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT\left(\frac{n}{b}\right) + n^c & \text{otherwise} \end{cases}$$

Then,

- If $\log_b(a) < c$, then $T(n) = \Theta(n^c)$.
- If $\log_b(a) = c$, then $T(n) = \Theta(n^c \lg(n))$.
- If $\log_b(a) > c$, then $T(n) = \Theta(n^{\log_b(a)})$.

Sanity Check: For Merge Sort, we have a=2,b=2,c=1. Then, $\log_2(2)=1=1$. So, $T(n)=n\lg n$.

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT\left(\frac{n}{b}\right) + n^c & \text{otherwise} \end{cases}$$

We assume that $\log_b(a) < c$. Then, unrolling the recurrence, we get:

$$T(n) = n^{c} + aT(n/b)$$

$$= n^{c} + a((n/b)^{c} + aT(n/b^{2}))$$

$$= n^{c} + a(n/b)^{c} + a^{2}(n/b^{2})^{c} + \dots + a^{\log_{b}(n)}(n/b^{\log_{b}n})^{c}$$

$$= \sum_{i=0}^{\log_{b}(n)} a^{i} \left(\frac{n^{c}}{b^{ic}}\right)$$

$$= n^{c} \sum_{i=0}^{\log_{b}(n)} \left(\frac{a}{b^{c}}\right)^{i}$$

$$= n^{c} \left(\frac{\left(\frac{a}{b^{c}}\right)^{\log_{b}(n)+1} - 1}{\left(\frac{a}{b^{c}}\right) - 1}\right) \approx n^{c} \left(\left(\frac{a}{b^{c}}\right)^{\log_{b}(n)}\right) \approx n^{c}$$

Adam Blank

F

Winter 2016

332

Data Abstractions

Lecture 6b

Amortized Analysis

Stack ADT

push(val)	Adds val to the stack.
pop()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
peek()	Returns the most-recent item not already returned by a pop. (Errors if empty.)
isEmpty()	Returns true if all inserted elements have been returned by a pop.

Let's analyze the time complexity for these various methods. (You know how they work, because you just implemented them!)

Method	Time Complexity
isEmpty()	Θ(1)
peek()	$\Theta(1)$
pop()	$\Theta(1)$
push(val)	??

push is actually slightly more interesting.

Worst Case

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case

Insight: Our analysis seems wrong. Saying linear time feels wrong.

Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

Worst Case

If there's no more space, we double the size of the array, and copy all the elements. So, it's $\mathcal{O}(n)$.

Insight: Our analysis seems wrong. Saying linear time feels wrong.

This is where "amortized analysis" comes in. Sometimes, we have a **very** rare expensive operation that we can "charge" to other operations.

Intuition: Rent, Tuition

You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:

- The next push will take $\mathcal{O}(n)$ (to resize the array to size 2n)
- The n-1 operations after that will all be $\mathcal{O}(1)$, because we know we have enough space

Considering these operations in aggregate, we have n operations that take $(c_0+c_1n)+(n-1)\times c_2$ time.

So, how long does each operation take:

$$\frac{(c_0 + c_1 n) + (n - 1) \times c_2}{n} \le \frac{n \max(c_0, c_2) + c_1 n}{n} = \max(c_0, c_2) + c_1 = \mathcal{O}(1)$$

$$n \rightarrow n+1$$

$$n \rightarrow \frac{3n}{2}$$

$$n \rightarrow 5n$$

Which is better 2n, $\frac{3n}{2}$, or 5n?

 $n \rightarrow n+1$

This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

$$n \rightarrow \frac{3n}{2}$$

$$n \rightarrow 5n$$

Which is better 2n, $\frac{3n}{2}$, or 5n?

$$n \rightarrow n+1$$

This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

$$n \rightarrow \frac{3n}{2}$$

This still works. Now, we go over the next $\frac{3n}{2} - n$ operations:

$$\frac{n+(n/2-1)\times 1}{\frac{n}{2}}=\mathcal{O}(1)$$

$$n \rightarrow 5n$$

Which is better 2n, $\frac{3n}{2}$, or 5n?

This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

$$n \rightarrow \frac{3n}{2}$$

This still works. Now, we go over the next $\frac{3n}{2} - n$ operations:

$$\frac{n+(n/2-1)\times 1}{\frac{n}{2}}=\mathcal{O}(1)$$

■
$$n \rightarrow 5n$$
This is good t

This is good too:

$$\frac{n+(4n-1)\times 1}{4n}=\mathcal{O}(1)$$

Which is better 2n, $\frac{3n}{2}$, or 5n?