Data Abstractions

More Recurrences

Solving the reverse Recurrence

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ c_{0}+c_{1} n+T(n-1) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
T(n) & =\left(c_{0}+c_{1} n\right)+T(n-1) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+T(n-2) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+\left(c_{0}+c_{1}(n-2)\right)+\ldots+\left(c_{0}+c_{1}(1)\right)+d_{0} \\
& =\sum_{i=0}^{n-1}\left(c_{0}+c_{1}(n-i)\right)+d_{0} \\
& =\sum_{i=0}^{n-1} c_{0}+\sum_{i=0}^{n-1} c_{1}(n-i)+d_{0} \\
& =n c_{0}+c_{1} \sum_{i=1}^{n} i+d_{0} \\
& =n c_{0}+c_{1}\left(\frac{n(n+1)}{2}\right)+d_{0} \\
& =\mathcal{O}\left(n^{2}\right)
\end{aligned}
$$

A recurrence where we solve some constant piece of the problem (e.g. "-1", "-2", etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying "plug the definition into itself until a pattern emerges".

Now, back to mergesort.

Analyzing Merge Sort

Merge Sort

First, we need to find the recurrence:

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

This recurrence isn't linear! This is a "divide and conquer" recurrence.

Analyzing Merge Sort

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

This time, there are multiple possible approaches:
Unrolling the Recurrence

$$
\begin{aligned}
T(n) & =\left(c_{2}+c_{1} n\right)+2\left(c_{2}+c_{1} n+2 T(n / 4)\right) \\
& =\left(c_{2}+c_{1} n\right)+2\left(c_{2}+c_{1} n+2\left(c_{2}+c_{1} n+2 T(n / 8)\right)\right) \\
& =c_{2}+2 c_{2}+4 c_{2}+\ldots+\operatorname{argh}+\ldots
\end{aligned}
$$

This works, but l'd rarely recommend it.

Insight: We're branching in this recurrence. So, represent it as a tree!

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+\underset{T(n)}{2 T(n / 2)} & \text { otherwise }\end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise } \\ \bigwedge_{T(n / 2)}^{n} & \end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+c_{1} n+2 T(n / 2) & \text { otherwise }\end{cases}
$$

Since the recursion tree has height $\lg (n)$ and each row does n work, it follows that $T(n) \in \mathcal{O}(n \lg (n))$.

Find A Big-Oh Bound For The Worst Case Runtime

```
1 sum(n) {
    if (n<2) {
        return n;
    }
    return 2 + sum(n - 2);
}
```

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{0} & \text { if } n=1 \\ c_{0}+T(n-2) & \text { otherwise }\end{cases}
$$

$$
T(n)=c_{0}+c_{0}+\cdots+c_{0}+d_{0}
$$

$$
=c_{0}\left(\frac{n}{2}\right)+d_{0}
$$

$$
=\mathcal{O}(n)
$$

sum Examples \#2

Find A Big-Oh Bound For The Worst Case Runtime

1

```
2 if (L.size() == 0) {
3
4
5
6
7
8
\[
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+T(n / 2) & \text { otherwise }\end{cases}
\]

\section*{sum Examples \#2}
\[
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ d_{1} & \text { if } n=1 \\ c_{0}+T(n / 2) & \text { otherwise }\end{cases}
\]


So, \(T(n)=c_{0}(\lg (n)-1)+d_{1}=\mathcal{O}(\lg n)\).

Consider a recurrence of the form:
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n^{c} & \text { otherwise }\end{cases}
\]

Then,
\(\square\) If \(\log _{b}(a)<c\), then \(T(n)=\Theta\left(n^{c}\right)\).
If \(\log _{b}(a)=c\), then \(T(n)=\Theta\left(n^{c} \lg (n)\right)\).
- If \(\log _{b}(a)>c\), then \(T(n)=\Theta\left(n^{\log _{b}(a)}\right)\).

Sanity Check: For Merge Sort, we have \(a=2, b=2, c=1\). Then, \(\log _{2}(2)=1=1\). So, \(T(n)=n \lg n\).
\[
T(n)= \begin{cases}d & \text { if } n=1 \\ a T\left(\frac{n}{b}\right)+n^{c} & \text { otherwise }\end{cases}
\]

We assume that \(\log _{b}(a)<c\). Then, unrolling the recurrence, we get:
\[
\begin{aligned}
T(n) & =n^{c}+a T(n / b) \\
& =n^{c}+a\left((n / b)^{c}+a T\left(n / b^{2}\right)\right) \\
& =n^{c}+a(n / b)^{c}+a^{2}\left(n / b^{2}\right)^{c}+\cdots+a^{\log _{b}(n)}\left(n / b^{\log _{b} n}\right)^{c} \\
& =\sum_{i=0}^{\log _{b}(n)} a^{i}\left(\frac{n^{c}}{b^{c}}\right) \\
& =n^{c} \sum_{i=0}^{\log _{b}(n)}\left(\frac{a}{b^{c}}\right)^{i} \\
& =n^{c}\left(\frac{\left(\frac{a}{b^{c}}\right)^{\log _{b}(n)+1}-1}{\left(\frac{a}{b^{c}}\right)-1}\right) \approx n^{c}\left(\left(\frac{a}{b^{c}}\right)^{\log _{b}(n)}\right) \approx n^{c}
\end{aligned}
\]

\section*{Data Abstractions}

\section*{CSE 332: Data Abstractions}

\section*{Amortized Analysis}


Stack ADT
\begin{tabular}{|l|l|}
\hline push (val) & Adds val to the stack. \\
\hline pop() & \begin{tabular}{l} 
Returns the most-recent item not already returned by a \\
pop. (Errors if empty.)
\end{tabular} \\
\hline peek() & \begin{tabular}{l} 
Returns the most-recent item not already returned by a \\
pop. (Errors if empty.)
\end{tabular} \\
\hline isEmpty() & \begin{tabular}{l} 
Returns true if all inserted elements have been returned by \\
a pop.
\end{tabular} \\
\hline
\end{tabular}

Let's analyze the time complexity for these various methods. (You know how they work, because you just implemented them!)
\begin{tabular}{l|c} 
Method & Time Complexity \\
\hline isEmpty () & \(\Theta(1)\) \\
peek () & \(\Theta(1)\) \\
pop() & \(\Theta(1)\) \\
push (val) & \(? ?\)
\end{tabular}
push is actually slightly more interesting.

\section*{Analyzing push for an ArrayStack}

\section*{Best Case}

\section*{Worst Case}


Insight: Our analysis seems wrong. Saying linear time feels wrong.

\section*{Analyzing push for an ArrayStack}

\section*{Best Case}

There's more space in the underlying array! Then, it's \(\Omega(1)\).

\section*{Worst Case}


Insight: Our analysis seems wrong. Saying linear time feels wrong.

\section*{Analyzing push for an ArrayStack}

\section*{Best Case}

There's more space in the underlying array! Then, it's \(\Omega(1)\).

\section*{Worst Case}

If there's no more space, we double the size of the array, and copy all the elements. So, it's \(\mathcal{O}(n)\).


Insight: Our analysis seems wrong. Saying linear time feels wrong.

\section*{Analyzing push for an ArrayStack}

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

\section*{Intuition: Rent, Tuition}

You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

\section*{Back to ArrayStack}

Say we have a full Stack of size \(n\). Then, consider the next \(n\) pushes:
- The next push will take \(\mathcal{O}(n)\) (to resize the array to size \(2 n\) )
- The \(n-1\) operations after that will all be \(\mathcal{O}(1)\), because we know we have enough space

Considering these operations in aggregate, we have \(n\) operations that take \(\left(c_{0}+c_{1} n\right)+(n-1) \times c_{2}\) time.
So, how long does each operation take:
\[
\frac{\left(c_{0}+c_{1} n\right)+(n-1) \times c_{2}}{n} \leq \frac{n \max \left(c_{0}, c_{2}\right)+c_{1} n}{n}=\max \left(c_{0}, c_{2}\right)+c_{1}=\mathcal{O}(1)
\]

What happens if we change our resize rule to each of the following:
\(n \rightarrow n+1\)
\[
n \rightarrow \frac{3 n}{2}
\]
\(n \rightarrow 5 n\)

Which is better \(2 n, \frac{3 n}{2}\), or \(5 n\) ?
Java uses \(\frac{3 n}{2}\) to minimized wasted space.

\section*{Analyzing push for an ArrayStack}

What happens if we change our resize rule to each of the following:
\(n \rightarrow n+1\)
This is really bad! We can only amortize over the single operation which gives us:
\[
\frac{n}{1}=\mathcal{O}(n)
\]
\(n \rightarrow \frac{3 n}{2}\)
\(n \rightarrow 5 n\)

Which is better \(2 n, \frac{3 n}{2}\), or \(5 n\) ?
Java uses \(\frac{3 n}{2}\) to minimized wasted space.

What happens if we change our resize rule to each of the following:
\(n \rightarrow n+1\)
This is really bad! We can only amortize over the single operation which gives us:
\[
\frac{n}{1}=\mathcal{O}(n)
\]
\(n \rightarrow \frac{3 n}{2}\)
This still works. Now, we go over the next \(\frac{3 n}{2}-n\) operations:
\[
\frac{n+(n / 2-1) \times 1}{\frac{n}{2}}=\mathcal{O}(1)
\]
\(n \rightarrow 5 n\)

Which is better \(2 n, \frac{3 n}{2}\), or \(5 n\) ?
Java uses \(\frac{3 n}{2}\) to minimized wasted space.

What happens if we change our resize rule to each of the following:
\(n \rightarrow n+1\)
This is really bad! We can only amortize over the single operation which gives us:
\[
\frac{n}{1}=\mathcal{O}(n)
\]
\(n \rightarrow \frac{3 n}{2}\)
This still works. Now, we go over the next \(\frac{3 n}{2}-n\) operations:
\[
\frac{n+(n / 2-1) \times 1}{\frac{n}{2}}=\mathcal{O}(1)
\]
\(n \rightarrow 5 n\)
This is good too:
\[
\frac{n+(4 n-1) \times 1}{4 n}=\mathcal{O}(1)
\]

Which is better \(2 n, \frac{3 n}{2}\), or \(5 n\) ?
Java uses \(\frac{3 n}{2}\) to minimized wasted space.```

