Adam Blank Lecture 6a Winter 2016

535

Data Abstractions

7y 1 7 T 70 10 T T0) T T T) T 1) 7Y T

Recurrence

dy ifn=0
”"”{mmwr(m) otherwise

T(n)=(c+en) + T(n-1)
“(arem) + (oralm-1) + T(n-2)
=(c+am) + (c+a(m-1)) + (w+ea(n=2))+.+(co+ei(1))+do

S o b

zx<) -

p Now, back to mergesort.
=0(?)

Solving Linear Recurrences

A recurrence where we solve some constant piece of the problem (e
E etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying "plug the definition into itself until a
pattern emerges”.

Analyzing Merge Sort

Merge Sort

1
2
3
PE
5 else (
5 int nid = Lsize() / 2;

7 return serge(

8 sort(L.sublist(0, mid)),

9 Sort (L subList(nid, L.size()))
10)

u oy
12

First, we need to find the recurrence:
T(m={d
co+en+2T(nf2)

This recurrence isn't ide and conquer”

Analyzing Merge Sort

dy ifn=0
T(n)={dy ifn=

e+ 20(nf2) otherwise
This time, there are multiple possible approaches
Unrolling the Recurrence

T(n)=(c2+ein) + 2(cz+ein+2T(nf4))

+ Aerans2es ran+20(1f$)))
4 eyt varght

This works, but I'd rarely recommend it.

Insight: We're branching in this recurrence. So, represent it as treel

Merge Sort: Solving the Recurrence 5

do itn=0
T(n)={d itn=1
co+cin+27(nf2) otherwise

Merge Sort: Solving the Recurrence 3

dy ifn=0
r(ﬂ):(m ifn=1

cotein+21(nf2) otherwise

Merge Sort: Solving the Recurrence

do ifn=0
T(n)={d ifn=1

co+en+2T(nf2) otherwise

/N

Merge Sort: Solving the Recurrence

do ifn=0
Tn)=1d ifn=1

o+ an+2T(nf2) otherwise

Merge Sort: Solving the Recurrence

(do itn=0
T(n)={d ifn=1

co+en+2T(nf2) otherwise

MARARAA

Since the recursion tree has height liz(n) and each row does n work, it
follows that T'(n) ¢ O(nlg(n)).

sum Examples #1

Find A Big-Oh Bound For The Worst Case Runtime

1 sy €
Pt
H
H
H Feoecam-an
H
dy ifn=0
T(n)={dy ifn=1
0+T(n-2) otherwise
- coversseords
wof2) b
=0(n)

sum Examples #2

sum Examples #2 u
o ifn-0
Find A Big-Oh Bound For The Worst Case Runtime T(n)=1{d ifa=1
! co+T(nf2) otherwise
5 return fatse;
PI a
5 else it (Lstze) = 1)
5 retu Lio] = value;
T
i ow a
5 et o - Lszen / 2
1 (L < valve) (
1 return binarysearch(L.subList(ssd + 1, L.size()), value);
u uth I
B et
1 Teturn binarysearch(L.subList(0, mid), value);
B
6
ER
(do ifn=0 @
T(n)=1dy =1
@+T(nf2) othervise S0, 7(n) = colg(n) - 1) +ds = O(1gn)
13 Proving the First Case of Master 1

Master Theorem

Consider a recurrence of the form
d ifm=1
-
™ {or(%)m‘ otherwise

Then,
u If log, (a) < c, then T(n) = ©(n)
u 1f log, (a) = ¢, then T'(n) = ©(nIg(n))
& 1f log, (a) > ¢, then T'(n) = O(n%(*),

Sanity Check: For Merge Sort, we have a=2,5=
log;(2) = 1= 1. So, T(n) =nlgn

d
0
o {(.T(g)—u‘
We sssume that log
T(n) =0 +aT ()
= +a((nfb) +aT (nfb?))
=0 valnfb) 4P (fB) +

togs (1)

5 ()

=

gyt

ifn=1

otherwise

+ B0 (e

(7)<

() <c. Then, unrolling the recurrence, we get

e

Adam Blank

535

Data Abstractions

E 332: Data Abstra

Amortized Analysis

Stack ADT & ArrayStack Analysi

Stack ADT
push(val) | Adds val to the stack
PopO Rﬂ e The MosEveCenE e not aeady ERTEd b 3
p. (Ertors if empty.)
Poek0) et the mst resent o ot Sy el 57 3
pop. (Errors if empty.)
TsBapty() | Retwrns true if all inserted elements have been retumed by
2p

Let's analyze the time complexity for these various methods. (You know
how they work, because you just implemented them!

Method | Time Complexity
TeEnpty))
peek() o(1)
pop() (1)
push(val) 7

push s actually slightly more interesting.

Analyzing push for an ArraySta

Best Case

There’s more space in the underlying array! Then, it's ©(1).
Worst Case

If there’s no more space, we double the size of the array, and copy all the
elements. So, it's O(n)

Insight: Our analysis seems wrong. Saying linear time feels wrong

Analyzing push for an ArrayStack

This is where “amortized analysis" comes in. Sometimes, we have a very
rare expensive operation that we can "“charge”

o other operations.
Intuition: Rent, Tuition

You pay one big sum for a long period of time, but you can afford it
because it happens very rarely.

Back to ArrayStack

Say we have a full Stack of size n. Then, consider the next n pushes:
& The next push will take O(n) (to resize the array to size 2n)

0 liee=D e i e e) el
have enough

Considering these T have n operations that take

(co+cn) +(n~1) xc
e et

(cotam)+(n=1)xes _nm (q,ﬂm)uw mmax(ene) =01

Analyzing push for an ArrayStack
What happens if we change our resize rule to each of the following:

This i really bad! We can only amortize over the single operation
which gives us:

T=0m)

This stil works. Now, we go over the next %

n operations

mER Do

1= 5n
This is good too

n+@n-1)x1

o
Which is better 2n, %, or Sn?

Java uses

2 to minimized wasted space.

