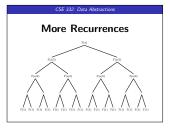


Data Abstractions

Winter 2016



```
Solving the reverse Recurrence T(a) = \begin{cases} d_0 & \text{if } n = 0 \\ -a + (n + \tau)(n) & \text{otherwise} \end{cases} T(a) = (\alpha + \tau)(n) + (\alpha + \tau)(n + \tau)(n
```

```
Solving Linear Recurrences

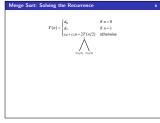
A recurrence where we solve some constant piece of the problem (e.g. "-1", "-2", etc.) is called a Linear Recurrence.

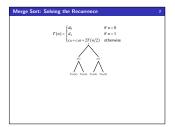
We solve these like we did above by Unrolling the Recurrence.

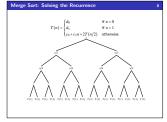
This is, a fancy very of saying "plug the definition into itself until a pattern emerges".

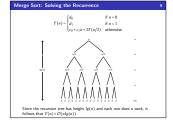
Now, back to margement.
```

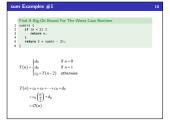
```
Analyzing Merge Sort 3 \frac{\text{Merge Sort}}{1 \text{ sort(L)}} \left\{ \begin{array}{c} \text{Merge Sort} \\ \text{ sort(L)} \\ \text{ or } \text{ (i.e. L)} \\ \text{ or } \text{ (i.e. L)} \\ \text{ or } \text{ or } \text{ (i.e. L)} \\ \text{ or } \text{
```

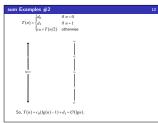















Adam Blank Lecture 6b Winter 2016

Data Abstractions

Stack ADT & ArrayStack Analysis

Stack ADT

push(val)	Adds val to the stack.	
pop()	Returns the most-recent item not already returned by a pop. (Errors if empty.)	
peek()	Returns the most-recent item not already returned by a pop. (Errors if empty.)	
isEmpty()	Returns true if all inserted elements have been returned by	

Let's analyze the time complexity for these various methods. (You know how they work, because you just implemented them!)

Method	Time Complexity
isEnpty()	Θ(1)
peek()	Θ(1)
pop()	Θ(1)
push(val)	77

push is actually slightly more interesting. Analyzing push for an ArrayStack

Analyzing push for an ArrayStack Best Case

There's more space in the underlying array! Then, it's $\Omega(1)$.

If there's no more space, we double the size of the array, and copy all the elements. So, it's O(n).

Insight: Our analysis seems wrong. Saying linear time feels wrong.

This is where "amortized analysis" comes in. Sometimes, we have a very rare expensive operation that we can "charge" to other operations.

Intuition: Rent. Tuition You pay one big sum for a long period of time, but you can afford it because it happens very rarely.

Say we have a full Stack of size n. Then, consider the next n pushes:

- **II** The next push will take O(n) (to resize the array to size 2n) \mathbf{m} The n-1 operations after that will all be $\mathcal{O}(1)$, because we know we
- have enough space

Considering these operations in aggregate, we have n operations that take $(c_0 + c_1 n) + (n - 1) \times c_2$ time.

So, how long does each operation take:

 $\frac{(c_0 + c_1 n) + (n - 1) \times c_2}{c_1 + c_2 + c_2} \le \frac{n \max(c_0, c_2) + c_1 n}{c_1 + c_2 + c_2} = \max(c_0, c_2) + c_1 = O(1)$

Analyzing push for an ArrayStack

What happens if we change our resize rule to each of the following:

This is really bad! We can only amortize over the single operation which gives us:

$$\frac{n}{1} = \mathcal{O}(n)$$

This still works. Now, we go over the next $\frac{3n}{2} - n$ operations:

$$\frac{n+(n/2-1)\times 1}{n} = \mathcal{O}(1)$$

n → 5n
This is good too:

$$\frac{n+(4n-1)\times 1}{4n} = \mathcal{O}(1)$$

Which is better $2n, \frac{3n}{7}$, or 5n?

Java uses $\frac{3a}{\pi}$ to minimized wasted space.