Adam Blank

CSEE

Data Abstractions

Outline

1 Summations

2 Warm-Ups

3 Analyzing Recursive Code

4 Generating and Solving Recurrences

Warm-Up \#1: append

Let x and L be LinkedList Nodes
Analyzing append
1 append (x, L) \{
Node curr = L
ile (curr != null \&\& curr.next != null) \{ curr = curr. next;
\}
\}
What is the.

- best case time complexity of append?
$\Omega(n)$, because we always must do n iterations of the loop.
- worst case time complexity of append?
$\mathcal{O}(n)$, because we never do more than n iterations of the loop.

Since we can upper and lower bound the time complexity with the same complexity class, we can say append runs in $\Theta(n)$.

CSE 332: Data Abstractions

Algorithm Analysis 2

- Gauss' Sum: $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
- Infinite Geometric Series: $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$, when $|x|<1$.
- Finite Geometric Series: $\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$, when $x \neq 1$.

Pre-Condition: L_{1} and L_{2} are sorted.
Post-Condition: Return value is sorted.

Merge

1 merge $\left(L_{1}, L_{2}\right)$ \{
p1, p2 = 0;
While both lists have more elements
Append the smaller element to L.
Increment p1 or p2, depending on which had the smaller element Append any remaining elements from L_{1} or L_{2} to L
return L
8 \}
What is the... (remember the lists are Nodes)

- best case \# of comparisons of merge?
$\Omega(1)$. Consider the input: [0], $[1,2,3,4,5,6]$.
- worst case \# of comparisons of merge? $\mathcal{O}(n)$. Consider the input: $[1,3,5],[2,4,6]$.
- worst case space usage of merge?
$\mathcal{O}(n)$, because we allocate a constant amount of space per element.

Well, we did merge, what did you think was next?

```
Consider the following code:
Merge Sort
sort(L) {
    if (L.size() < 2) {
        return L;
    }
    else {
        int mid = L.size() / 2;
        return merge(
            sort(L.subList(0, mid)),
            sort(L.subList(mid, L.size()))
        );
    }
}
```

What is the worst case/best case \# of comparisons of sort?

Yeah, yeah, it's $\mathcal{O}(n \lg n)$, but why?

Merge Sort is hard; so. . .

```
Let's start with trying to analyze this code:
    LinkedList Reversal
    reverse(L) {
        if (L == null) {
        return null;
    }
        else {
            Node front = L;
            Node rest = L.next;
            L.next = null;
            Node restReversed = reverse(rest);
            append(front, restReversed);
    }
```

 Notice that append is the same function from the beginning of lecture
 that had runtime \(\mathcal{O}(n)\).
 So, what is the time complexity of reverse?
 We split the work into two pieces:
 - Non-Recursive Work
 - Recursive Work

Non-Recursive Work

```
LinkedList Reversal
reverse(L) {
        if (L == null) {
        return null;
    }
        else {
        Node front = L;
        Node rest = L.next;
        Node rest = null;
        Node restReversed = reverse(rest);
        append(front, restReversed);
    }
13 }
```

Non-Recursive Work: $\mathcal{O}(n)$, which means we can write it as $c_{0}+c_{1} n$ for some constants c_{0} and c_{1}.
Recursive Work: The work it takes to do reverse on a list one smaller. Putting these together almost gives us the recurrence:

$$
T(n)=c_{0}+c_{1} n+T(n-1)
$$

We're missing the base case!

What is a recurrence?

In CSE 311, you saw a bunch of questions like:
Induction Problem
Let $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$. Prove $f_{n}<2^{n}$ for all $n \in \mathbb{N}$.
(Remember the Fibonacci Numbers? You'd better bet they're going to show up in this course!)

That's a recurrence. That's it.

Definition (Recurrence)

A recurrence is a recursive definition of a function in terms of smaller values.

Non-Recursive Work

```
LinkedList Reversal
reverse(L) {
        if (L == null) {
        return null;
    }
    else {
        Node front = L; 
        Node rest = L.next; }\quad//\mathcal{O}(1
        L.next = null; //O(1)
        Node restReversed = reverse(rest);
        append(front, restReversed); //O(n)
    }
}
Non-Recursive Work: \(\mathcal{O}(n)\), which means we can write it as \(c_{0}+c_{1} n\) for some constants \(c_{0}\) and \(c_{1}\).
```

```
LinkedList Reversal
reverse(L) {
        if (L == null) {
            return null;
    }
        Node front = L;
        Node rest = L.next
        Node rest = L.n
        Node restReversed = reverse(rest);
        append(front, restReversed);
    }
}
```

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ c_{0}+c_{1} n+T(n-1) & \text { otherwise }\end{cases}
$$

Now, we need to solve the recurrence.

$$
T(n)= \begin{cases}d_{0} & \text { if } n=0 \\ c_{0}+c_{1} n+T(n-1) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
T(n) & =\left(c_{0}+c_{1} n\right)+T(n-1) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+T(n-2) \\
& =\left(c_{0}+c_{1} n\right)+\left(c_{0}+c_{1}(n-1)\right)+\left(c_{0}+c_{1}(n-2)\right)+\ldots+\left(c_{0}+c_{1}(1)\right)+d_{0} \\
& =\sum_{i=0}^{n-1}\left(c_{0}+c_{1}(n-i)\right)+d_{0} \\
& =\sum_{i=0}^{n-1} c_{0}+\sum_{i=0}^{n-1} c_{1}(n-i)+d_{0} \\
& =n c_{0}+c_{1} \sum_{i=1}^{n} i+d_{0} \\
& =n c_{0}+c_{1}\left(\frac{n(n+1)}{2}\right)+d_{0} \\
& =\mathcal{O}\left(n^{2}\right)
\end{aligned}
$$

Solving Linear Recurrences

A recurrence where we solve some constant piece of the problem (e.g. " -1 ", " -2 ", etc.) is called a Linear Recurrence.

We solve these like we did above by Unrolling the Recurrence.

This is a fancy way of saying "plug the definition into itself until a pattern emerges".

Today's Takeaways!

- Understand that Big-Oh is just an "upper bound" and Big-Omega is just a "lower bound"
- Know how to make a recurrence from a recursive program
- Understand what a linear recurrence is
- Be able to find a closed form linear recurrences
- Know the common summations

