Adam Blank	Lecture 2

Outline

1 Comparing Algorithms

2 Asymptotic Analysis

Comparing Programs

In 143, we asked:
What does it mean to have an "efficient program"?
System.out.print("h");
System.out.print("e");
3 System.out.print("し");
System.out.print("l") 4 System.out.print("l");
System.out.println("hello") ;
output
>> left average run time is 1000 ns.
>> right average run time 5000 ns.

We're measuring in NANOSECONDS!

Both of these run very very quickly. The first is definitely better style, but it's not "more efficient."

Comparing Programs: \# Of Steps

hasDuplicate
Given a sorted int array, determine if the array has a duplicate.

```
Example
public int stepsHasDuplicatel(int[] array) {
    int steps = 0;
    for (int i=0; i < array.length; i++) {
        for (int j=0; j < array length; j++)
            steps++; /| The if statement is a step
            if (i != j && array[i] == array[j]) (
                return steps;
                return steps;
            }
        }
        return steps;
}
>> hasDuplicate1 average number of steps is }9758172\mathrm{ steps.
>> hasDuplicate2 average number of steps is 170 steps.
```


Why Not Count Steps in Programs?

```
■ Can we even count steps for an algorithm?
■ We must do this via testing; so, we may miss worst-case input!
- We must do this via testing; so, we may miss best-case input!
```

Instead, let's try running on arrays of size $1,2,3, \ldots, 1000000$, and plot:

Why Not Plot Steps in Programs?

- Can we even count steps for an algorithm?
- We must do this via testing; so, we may miss worst-case input!
- We must do this via testing; so, we may miss best-case input!

Comparing Code: Analytically

Basic Operations take "some amount of" Constant Time

- Arithmetic (fixed-width)
- Variable Assignment
- Access one Java field or array index
- etc.
(This is an approximation of reality: a very useful "lie".)

Complex Operations
Consecutive Statements. Sum of time of each statement
Conditionals. Time of condition $+\max$ (ifBranch, elseBranch)
Loops. Number of iterations * Time for Loop Body
Function Calls. Time of function's body
Recursive Function Calls. Solve Recurrence

Should we consider these "the same"?

We want to compare algorithms, not programs. In general, there are many answers (clarity, security, etc.). Performance (space, time, etc.) are generally among the most important.

- Only consider large inputs (any algorithm will work on 10)
- Answer will be independent of CPU speed, programming language, coding tricks, etc.
- Answer is general and rigorous, complementary to "coding it up and counting steps on some test cases"
- Can do analysis before coding!

Analyzing hasDuplicate

public boolean hasDuplicatel(int[] array) \{
for (int $\mathrm{i}=0$; i < array.length; $\mathrm{i}+\mathrm{+}$) $\{/ /$

\} ${ }^{3}$
${ }^{\text {r }}$ return false;
\}
public boolean hasDuplicate2(int[] array) \{

\} ${ }^{\}}$
return false;
\}

Probably a good idea, since they seem to be growing at the same rate. For reference, the function that dwarfs them both is x^{2}.

Here's two functions, $f(x)$ and $g(x)$. Ultimately, $g(x)$ will grow much faster than $f(x)$, but at the beginning, it is smaller.

Big-Oh Examples

True or False?
(1) $4+3 n \in \mathcal{O}(n)$ True ($n=n$)
(2) $4+3 n=\mathcal{O}(1)$ False: $(n \gg 1)$
(3) $4+3 n$ is $\mathcal{O}\left(n^{2}\right)$ True: $\left(n \leq n^{2}\right)$
(4) $n+2 \log n \in \mathcal{O}(\log n)$ False: $(n \gg \log n)$
(5) $\log n \in \mathcal{O}(n+2 \log n)$ True: $(\log n \leq n+2 \log n)$

Big-Oh Gotchas

- $\mathcal{O}(f)$ is a set! This means we should treat it as such
- If we know $f(n) \in \mathcal{O}(n)$, then it is also the case that $f(n) \in \mathcal{O}\left(n^{2}\right)$, and $f(n) \in \mathcal{O}\left(n^{3}\right)$, etc.
- Remember that small cases, really don't matter. As long as it's eventually an upper bound, it fits the definition.

Okay, but we haven't actually shown anything. Let's prove (1) and (2).

Big-Oh Proofs 2

Definition (Big-Oh)

We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$
We want to prove $4+3 n+4 n^{2} \in \mathcal{O}\left(n^{3}\right)$.

Scratch Work

We want to choose a c and n_{0} such that $4+3 n+4 n^{2} \leq c n^{3}$. So, manipulate the equation:

$$
4+3 n+4 n^{2} \leq 4 n^{3}+3 n^{3}+4 n^{3}=11 n^{3}
$$

For this to work, we need $4 \leq 4 n^{3}$ and $3 n \leq 3 n^{3} . n \geq 1$ satisfies this.

Proof

Choose $c=11$ and $n_{0}=1$. Then, note that $4+3 n+4 n^{2} \leq 4 n^{3}+3 n^{3}+4 n^{3}=$ $11 n^{3}$, because $n \geq 1$. It follows that $4+3 n+4 n^{2} \in \mathcal{O}\left(n^{3}\right)$.

We'd like to be able to compare two functions. Intuitively, we want an operation like " \leq " (e.g. $4 \leq 5$), but for functions.

If we have f and $4 f$, we should consider them the same:
$f \leq g$ when.
$f \leq c g$ where c is a constant and $c \neq 0$.
We also care about all values of the function that are big enough:
$f \leq g$ when.
For all n "large enough", $f(n) \leq c g(n)$, where $c \neq 0$
For some $n_{0} \geq 0$, for all $n \geq n_{0}, f(n) \leq c g(n)$, where $c \neq 0$
For some $c \neq 0$, for some $n_{0} \geq 0$, for all $n \geq n_{0}, f(n) \leq c g(n)$
Definition (Big-Oh)
We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.

Big-Oh Proofs

Definition (Big-Oh)
We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.
We want to prove $4+3 n \in \mathcal{O}(n)$. That is, we want to prove:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot 4+3 n \leq c n
$$

Proof Strategy

- Choose a c, n_{0} that work.
- Prove that they work for all $n \geq n_{0}$.

Proof

Choose $c=5$ and $n_{0}=5$. Then, note that $4+3 n \leq 4 n \leq 5 n$, because $n \geq 5$. It follows that $4+3 n \in \mathcal{O}(n)$

More Asymptotics

Definition (Big-Oh)
We say a function $f: A \rightarrow B$ is dominated by a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \leq c g(n)
$$

Formally, we write this as $f \in \mathcal{O}(g)$.

Definition (Big-Omega)
We say a function $f: A \rightarrow B$ dominates a function $g: A \rightarrow B$ when:

$$
\exists\left(c, n_{0}>0\right) \cdot \forall\left(n \geq n_{0}\right) \cdot f(n) \geq c g(n)
$$

Formally we write this as $f \in \Omega(g)$.

Definition (Big-Theta)

We say a function $f: A \rightarrow B$ grows at the same rate as a function $g: A \rightarrow B$ when: $f \in \mathcal{O}(g)$ and $f \in \Omega(g)$
Formally we write this as $f \in \Theta(g)$.
Important: You need not use the same c value for \mathcal{O} and Ω to prove Θ

Theta

True or False?
(1) $4+3 n \in \Theta(n)$ True
(2) $4+3 n$ is $\Theta\left(n^{2}\right)$ False

If you want to say " f is a tight bound for g ", do not use \mathcal{O}-use Θ.

Quick Notes On log

Because $\log _{2}$ is so common in CSE, we abbreviate it \lg. When it comes to Big-Oh, all log bases are the same:

Recall the \log change of base formula:

$$
\log _{b}(x)=\frac{\log _{d}(x)}{\log _{d}(b)}
$$

Then, to show $\log _{b}(n) \in \mathcal{O}\left(\log _{d}(n)\right)$, note the following For all $n \geq 0$, we have $\log _{b}(x)=\frac{1}{\log _{d}(b)} \log _{d}(x)$.

Today's Takeaways!

- There are many ways to compare algorithms
- Understand formal Big-Oh, Big-Omega, Big-Theta
- Be able to prove any of these

It's the Worst Case!

Remember, we're analyzing the worst case time! What else can we analyze?

- Space?
- Average Case?
- Best Case?
- Time over multiple operations?

Final Note

Which is Better?

$$
n^{1 / 10} \text { or } \log n
$$

- $\log n$ grows more slowly (Big-Oh)
- ... But the cross-over point is around 5×10^{17}

