CSE 332: Minimum Spanning Trees

Richard Anderson Spring 2016

Announcements

· No class on Monday

Union Find Review

- Data: set of pairwise disjoint sets.
- Operations
 - Union merge two sets to create their union
 - Find determine which set an item appears in
- · Amortized complexity
 - M Union and Find operations, on a set of size N

3

- Runtime O(M log*N)

Minimum Spanning Tree Problem

- Input: Undirected Graph G = (V,E) and C(e) is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$

11

Distance Clustering Algorithm

Let C = {{v₁}, {v₂}, . . . , {v_n}}; T = { } while |C| > K Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i U C_j$

