
1

CSE 332:

Minimum Spanning Trees

Richard Anderson

Spring 2016

Announcements

• No class on Monday

2

Union Find Review

• Data: set of pairwise disjoint sets.

• Operations

– Union – merge two sets to create their union

– Find – determine which set an item appears in

• Amortized complexity

– M Union and Find operations, on a set of size N

– Runtime O(M log*N)

3 4

Spanning Tree in a Graph

Spanning tree

 - Connects all the vertices

 - No cycles

5

Undirected Graph

• G = (V,E)

– V is a set of vertices (or nodes)

– E is a set of unordered pairs of vertices

1
2

3

4

5
6

7

V = {1,2,3,4,5,6,7}

E = {(1,2),(1,6),(1,5),(2,7),(2,3),

 (3,4),(4,7),(4,5),(5,6)}

2 and 3 are adjacent

2 is incident to edge (2,3)

6

Spanning Tree Problem

• Input: An undirected graph G = (V,E). G is

connected.

• Output: T E such that

– (V,T) is a connected graph

– (V,T) has no cycles

2

7

Spanning Tree Algorithm

ST(Vertex i) {

 mark i;

 for each j adjacent to i {

 if (j is unmarked) {

 Add (i,j) to T;

 ST(j);

 }

 }

}

Main() {

 T = empty set;

 ST(1);

}

Finding a reliable routing subnetwork:

• edge cost = probability that it won’t fail

• Find the spanning tree that is least likely to fail

8

Best Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

9

Example of a Spanning Tree

.80 .75

.95

.50
.95 1.0

.85

.84

.80

.89

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84

 = .5735

10

Minimum Spanning Trees
Given an undirected graph G=(V,E), find

a graph G’=(V, E’) such that:

– E’ is a subset of E

– |E’| = |V| - 1

– G’ is connected

– is minimal

 '),(

c
Evu

uv

G’ is a minimum

spanning tree.

11

Minimum Spanning Tree

Problem
• Input: Undirected Graph G = (V,E) and

C(e) is the cost of edge e.

• Output: A spanning tree T with minimum

total cost. That is: T that minimizes

Te

eCTC)()(

12

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not create a

cycle. Pick an edge with the smallest weight.

G=(V,E)

v

3

13

Kruskal’s Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. If u and v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

Sound familiar? 14

Example of for Kruskal

1

6

5

4

7

2

3 3

3
4

0

2 2

1

3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

 0 1 1 2 2 3 3 3 3 4

1
3

15

Data Structures for Kruskal

• Sorted edge list

• Disjoint Union / Find
– Union(a,b) - merge the disjoint sets named by a and b

– Find(a) returns the name of the set containing a

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

 0 1 1 2 2 3 3 3 3 4

16

Example of DU/F

1

6

5

4

7

2

3 3

3
4

0

2 2

1

3

1
3

7

2

3

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)

 0 1 1 2 2 3 3 3 3 4

Kruskal’s Algorithm

• Add the cheapest edge that joins disjoint

components

12

2

13

9

7

8
5

16

15

11

14

6

1

17

10

18

19

4

3

t a

e

c

g

f
b

s

u

v 18

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;

Initialize A to be empty;

for each edge (i,j) chosen in increasing order do

 u := Find(i);

 v := Find(j);

 if not(u = v) then

 add (i,j) to A;

 Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?

4

19

Kruskal code
void Graph::kruskal(){

 int edgesAccepted = 0;

 DisjSet s(NUM_VERTICES);

 while (edgesAccepted < NUM_VERTICES – 1){

 e = smallest weight edge not deleted yet;

 // edge e = (u, v)

 uset = s.find(u);

 vset = s.find(v);

 if (uset != vset){

 edgesAccepted++;

 s.unionSets(uset, vset);

 }

 }

}

2|E| finds

|V| unions

|E| heap ops

Total Cost:

|V| ops to init. sets

20

Kruskal’s Algorithm: Correctness

It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:

Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
 Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered
after adding e1 (must exist: u and v unconnected when e1

considered)
 cost(e2) cost(e1)
 can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK
 TK must also be minimal – contradiction!

MST Application: Clustering

• Given a collection of points in an r-

dimensional space, and an integer K,

divide the points into K sets that are

closest together

Distance clustering

• Divide the data set into K subsets to

maximize the distance between any pair of

sets

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2}

Divide into 2 clusters

Divide into 3 clusters

5

Divide into 4 clusters

Distance Clustering Algorithm

Let C = {{v1}, {v2},. . ., {vn}}; T = { }

while |C| > K

 Let e = (u, v) with u in Ci and v in Cj be the

 minimum cost edge joining distinct sets in C

 Replace Ci and Cj by Ci U Cj

K-clustering

