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CSE 332: 

Minimum Spanning Trees 

Richard Anderson  

Spring 2016 

 

Announcements 

• No class on Monday 
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Union Find Review 

• Data: set of pairwise disjoint sets. 

• Operations 

– Union – merge two sets to create their union 

– Find – determine which set an item appears in 

 

• Amortized complexity 

– M Union and Find operations, on a set of size N 

– Runtime O(M log*N) 
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Spanning Tree in a Graph 

Spanning tree 

 - Connects all the vertices 

 - No cycles 
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Undirected Graph 

• G = (V,E) 

– V is a set of vertices (or nodes) 

– E is a set of unordered pairs of vertices 
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V = {1,2,3,4,5,6,7} 

E = {(1,2),(1,6),(1,5),(2,7),(2,3), 

         (3,4),(4,7),(4,5),(5,6)} 

2 and 3 are adjacent 

2 is incident to edge (2,3) 
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Spanning Tree Problem 

• Input: An undirected graph G = (V,E). G is 

connected. 

• Output: T  E such that 

– (V,T) is a connected graph 

– (V,T) has no cycles 
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Spanning Tree Algorithm 

ST(Vertex i) { 

    mark i; 

    for each j adjacent to i  { 

        if (j is unmarked) { 

           Add (i,j) to T; 

           ST(j); 

        } 

    } 

} 

 

Main( ) { 

  T = empty set; 

  ST(1); 

} 

Finding a reliable routing subnetwork: 

• edge cost  =  probability that it won’t fail 

• Find the spanning tree that is least likely to fail 
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Best Spanning Tree 
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Example of a Spanning Tree 
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Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84 

                                    =  .5735 
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Minimum Spanning Trees 
Given an undirected graph G=(V,E), find 

a graph G’=(V, E’) such that: 

– E’ is a subset of E 

– |E’| = |V| - 1 

– G’ is connected 

–                   is minimal 
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G’ is a minimum 

spanning tree. 
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Minimum Spanning Tree 

Problem 
• Input: Undirected Graph G = (V,E) and  

C(e) is the cost of edge e. 

• Output: A spanning tree T with minimum 

total cost.  That is: T that minimizes 
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Kruskal’s MST Algorithm 

Idea: Grow a forest out of edges that do not create a 

cycle.  Pick an edge with the smallest weight. 

G=(V,E) 

v 
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Kruskal’s Algorithm for MST 

An edge-based greedy algorithm 

Builds MST by greedily adding edges 
 

1. Initialize with 

• empty MST 

• all vertices marked unconnected 

• all edges unmarked 

2. While there are still unmarked edges 
a. Pick the lowest cost edge (u,v) and mark it 

b. If u and v are not already connected, add (u,v) to the MST 

and mark u and v as connected to each other 

Sound familiar?  14 

Example of for Kruskal   
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(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5) 

   0      1       1      2      2       3      3      3       3       4 
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Data Structures for Kruskal 

• Sorted edge list 

 

 

• Disjoint Union / Find 
– Union(a,b) - merge the disjoint sets named by a and b 

– Find(a) returns the name of the set containing a 

 

 

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5) 

   0      1       1      2      2       3      3      3       3       4 
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Example of DU/F   
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(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5) 

   0      1       1      2      2       3      3      3       3       4 

Kruskal’s Algorithm 

• Add the cheapest edge that joins disjoint 

components 
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Kruskal’s Algorithm with DU / F 

Sort the edges by increasing cost; 

Initialize A to be empty; 

for each edge (i,j) chosen in increasing order do 

    u := Find(i); 

    v := Find(j); 

    if not(u = v) then  

        add (i,j) to A; 

        Union(u,v); 

This algorithm will work, but it goes through all the edges.   

 

Is this always necessary? 
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Kruskal code 
void Graph::kruskal(){ 

  int edgesAccepted = 0; 

  DisjSet s(NUM_VERTICES); 

 

  while (edgesAccepted < NUM_VERTICES – 1){ 

    e = smallest weight edge not deleted yet; 

    // edge e = (u, v) 

    uset = s.find(u); 

    vset = s.find(v); 

    if (uset != vset){ 

      edgesAccepted++; 

      s.unionSets(uset, vset); 

    } 

  } 

} 

2|E| finds 

|V| unions 

|E| heap ops 

Total Cost: 

|V| ops to init. sets 
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Kruskal’s Algorithm: Correctness 
 
It clearly generates a spanning tree. Call it TK. 
 

Suppose TK is not minimum: 

Pick another spanning tree Tmin with lower cost than TK 

Pick the smallest edge e1=(u,v) in TK that is not in Tmin 

Tmin already has a path p in Tmin from u to v 
  Adding e1 to Tmin will create a cycle in Tmin 

Pick an edge e2 in p that Kruskal’s algorithm considered 
after adding e1 (must exist: u and v unconnected when e1 

considered) 
  cost(e2)  cost(e1) 
  can replace e2 with e1 in Tmin without increasing cost! 

Keep doing this until Tmin is identical to TK 
  TK must also be minimal – contradiction! 

MST Application: Clustering 

• Given a collection of points in an r-

dimensional space, and an integer K, 

divide the points into K sets that are 

closest together 

Distance clustering 

• Divide the data set into K subsets to 

maximize the distance between any pair of 

sets 

– dist (S1, S2) = min {dist(x, y) | x in S1, y in S2} 

Divide into 2 clusters 

 

Divide into 3 clusters 
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Divide into 4 clusters 

 

Distance Clustering Algorithm 

Let C = {{v1}, {v2},. . ., {vn}};  T = { } 

while |C| > K 

 Let e = (u, v) with u in Ci and v in Cj be the 

 minimum cost edge joining distinct sets in C 

 Replace Ci and Cj by Ci U Cj 

   

  

K-clustering 


