CSE 332: Minimum Spanning Trees

Richard Anderson Spring 2016

Announcements

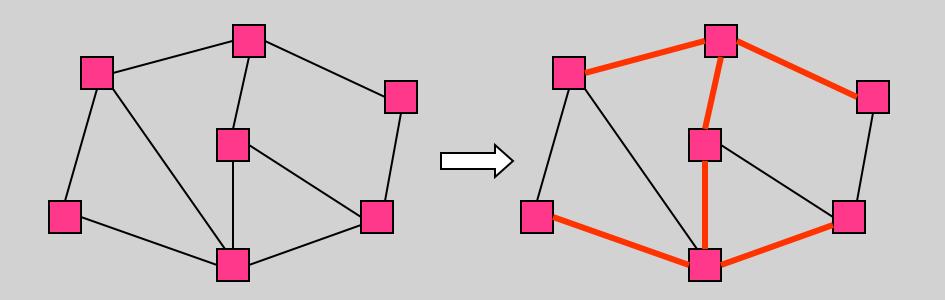
No class on Monday

Union Find Review

- Data: set of pairwise disjoint sets.
- Operations
 - Union merge two sets to create their union
 - Find determine which set an item appears in

- Amortized complexity
 - M Union and Find operations, on a set of size N
 - Runtime O(M log*N)

Spanning Tree in a Graph

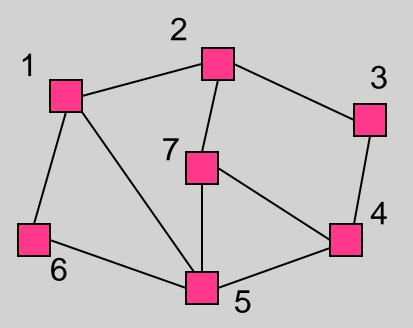


Spanning tree

- Connects all the vertices
- No cycles

Undirected Graph

- G = (V,E)
 - V is a set of vertices (or nodes)
 - E is a set of unordered pairs of vertices



$$V = \{1,2,3,4,5,6,7\}$$

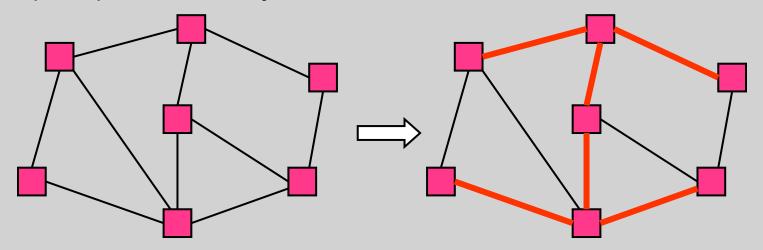
$$E = \{(1,2),(1,6),(1,5),(2,7),(2,3),$$

$$(3,4),(4,7),(4,5),(5,6)\}$$

2 and 3 are adjacent 2 is incident to edge (2,3)

Spanning Tree Problem

- Input: An undirected graph G = (V,E). G is connected.
- Output: T ⊂ E such that
 - (V,T) is a connected graph
 - (V,T) has no cycles



Spanning Tree Algorithm

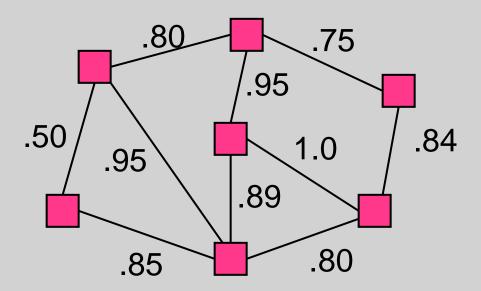
```
ST(Vertex i) {
   mark i;
   for each j adjacent to i {
      if (j is unmarked) {
        Add (i,j) to T;
      ST(j);
      }
   }
}
```

```
Main() {
  T = empty set;
  ST(1);
}
```

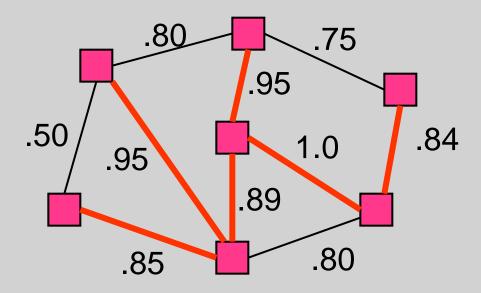
Best Spanning Tree

Finding a reliable routing subnetwork:

- edge cost = probability that it won't fail
- Find the spanning tree that is least likely to fail



Example of a Spanning Tree



Probability of success = $.85 \times .95 \times .89 \times .95 \times 1.0 \times .84$ = .5735

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G'=(V, E') such that:

- E' is a subset of E
- -|E'| = |V| 1

 $(u,v)\in E'$

- G' is connected
- $-\sum_{c_{uv}}$ is minimal

G' is a minimum spanning tree.

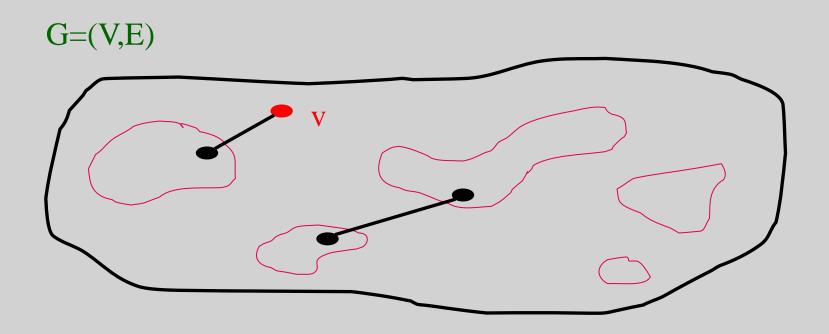
Minimum Spanning Tree Problem

- Input: Undirected Graph G = (V,E) and C(e) is the cost of edge e.
- Output: A spanning tree T with minimum total cost. That is: T that minimizes

$$C(T) = \sum_{e \in T} C(e)$$

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

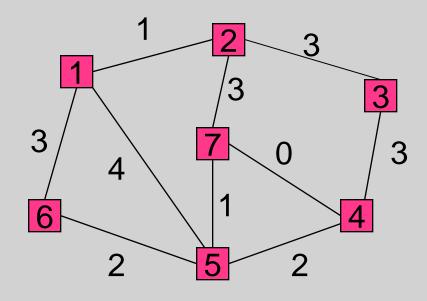


Kruskal's Algorithm for MST

An *edge-based* greedy algorithm Builds MST by greedily adding edges

- Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the <u>lowest cost edge</u> (u,v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Example of for Kruskal

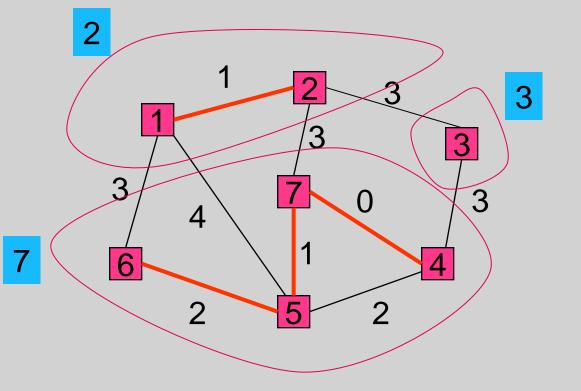


Data Structures for Kruskal

Sorted edge list

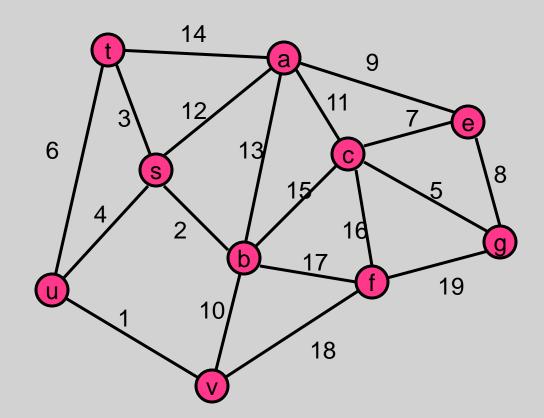
- Disjoint Union / Find
 - Union(a,b) merge the disjoint sets named by a and b
 - Find(a) returns the name of the set containing a

Example of DU/F



Kruskal's Algorithm

Add the cheapest edge that joins disjoint components



Kruskal's Algorithm with DU / F

```
Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,j) chosen in increasing order do
    u := Find(i);
    v := Find(j);
    if not(u = v) then
        add (i,j) to A;
        Union(u,v);
```

This algorithm will work, but it goes through all the edges.

Is this always necessary?

Kruskal code

```
void Graph::kruskal(){
                                     V ops to init. sets
  int edgesAccepted = 0;
  DisjSet s(NUM VERTICES);
                                             |E| heap ops
  while (edgesAccepted < NUM VERTICES / 1) {
    e = smallest weight edge not deleted yet;
    // edge e = (u, v)
    uset = s.find(u);
    vset = s.find(v);
                                           2|E| finds
    if (uset != vset) {
      edgesAccepted++;
      s.unionSets(uset, vset);
```

Total Cost:

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_K.

Suppose T_K is *not* minimum:

```
Pick another spanning tree T<sub>min</sub> with lower cost than T<sub>K</sub>
```

Pick the smallest edge $e_1 = (u, v)$ in T_K that is not in T_{min}

T_{min} already has a path *p* in T_{min} from *u* to *v*

 \Rightarrow Adding e_1 to T_{min} will create a cycle in T_{min}

Pick an edge e_2 in p that Kruskal's algorithm considered after adding e_1 (must exist: u and v unconnected when e_1 considered)

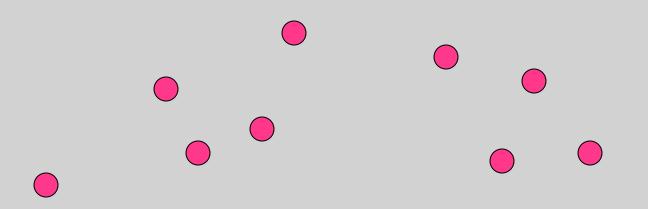
- $\Rightarrow \cos t(e_2) \ge \cos t(e_1)$
- \Rightarrow can replace e_2 with e_1 in T_{min} without increasing cost!

Keep doing this until T_{min} is identical to T_{K}

⇒ T_K must also be minimal – contradiction!

MST Application: Clustering

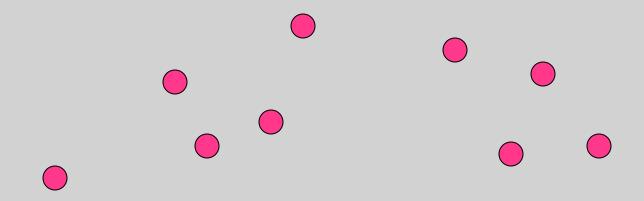
 Given a collection of points in an rdimensional space, and an integer K, divide the points into K sets that are closest together



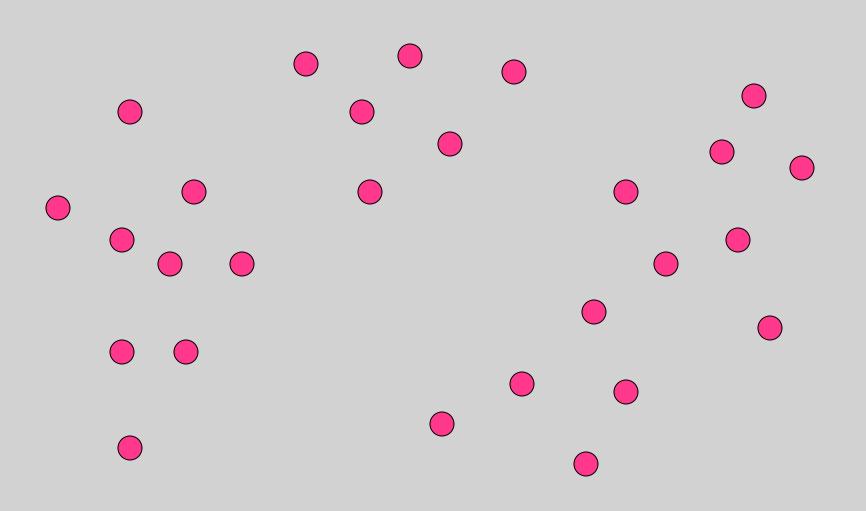
Distance clustering

 Divide the data set into K subsets to maximize the distance between any pair of sets

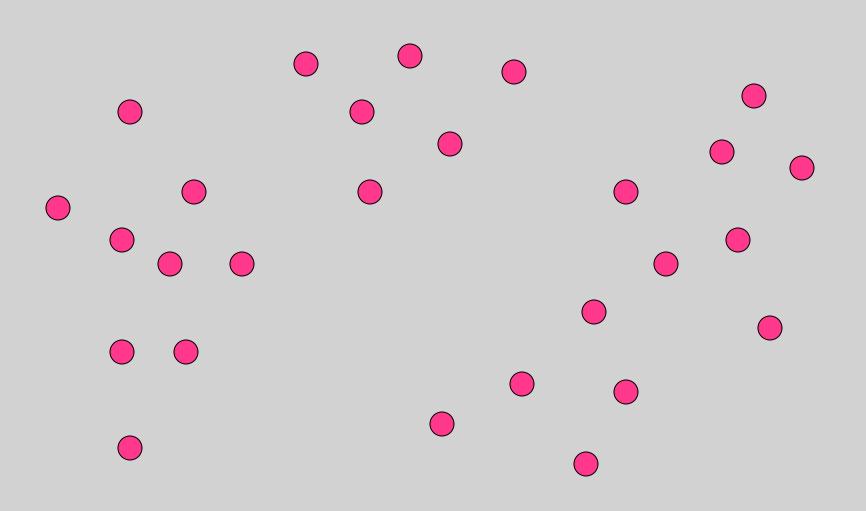
- dist
$$(S_1, S_2)$$
 = min $\{dist(x, y) \mid x \text{ in } S_1, y \text{ in } S_2\}$



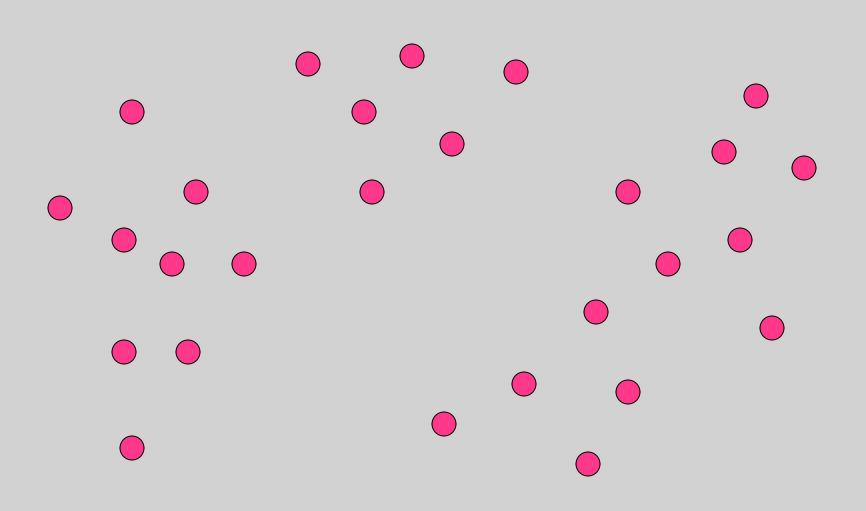
Divide into 2 clusters



Divide into 3 clusters



Divide into 4 clusters



Distance Clustering Algorithm

Let
$$C = \{\{v_1\}, \{v_2\}, ..., \{v_n\}\}; T = \{\}\}$$

while $|C| > K$

Let e = (u, v) with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by C_i U C_j

K-clustering

