CSE 332:
Minimum Spanning Trees

Richard Anderson
Spring 2016

Announcements

* No class on Monday

Union Find Review

« Data: set of pairwise disjoint sets.

« Operations
— Union — merge two sets to create their union
— Find — determine which set an item appears in

« Amortized complexity

— M Union and Find operations, on a set of size N
— Runtime O(M log*N)

Spanning Tree In a Graph

Spanning tree
- Connects all the vertices
- No cycles

Undirected Graph

+ G =(V,E)
— V Is a set of vertices (or nodes)
— E Is a set of unordered pairs of vertices

1

2

/

/

6~

-

/

I

\
\
5/

V={1,234,5,6,7}
E ={(1,2),(1,6),(1,5),(2,7),(2,3)
(3,4),(4,7),(4,5),(5,6)}

2 and 3 are adjacent
2 1S incident to edge (2,3)

Spanning Tree Problem

 Input: An undirected graph G = (V,E). G Is
connected.

* Qutput: T < E such that
—(V,T) Is a connected graph
— (V,T) has no cycles

]
/
T

G
N =
_—

Spanning Tree Algorithm

ST(Vertex i) {
mark i; Main() {
for each j adjacentto i { T =empty set;
if (j is unmarked) { ST(1);
Add (i,)) to T; }
ST();
}
}
}

Best Spanning Tree

Finding a reliable routing subnetwork:
« edge cost = probability that it won't fail
* Find the spanning tree that is least likely to fall

= e

.50/.95 KO /.84

.85

Example of a Spanning Tree

Probability of success = .85 x .95 x .89 x .95 x 1.0 x .84
= .5735

Minimum Spanning Trees

Given an undirected graph G=(V,E), find
a graph G’=(V, E’) such that:
— E’ Is a subset of E

—|E’| = |V]|- 1 G’ IS a minimum
spanning tree.

— G’ Is connected

— IS minimal
D Cu
(u,v)eE’

Minimum Spanning Tree
Problem

 Input: Undirected Graph G = (V,E) and
C(e) Is the cost of edge e.

« Output: A spanning tree T with minimum
total cost. That is: T that minimizes

C(T)=2 C(e)

ecl

11

Kruskal's MST Algorithm

ldea: Grow a forest out of edges that do not create a
cycle. Pick an edge with the smallest weight.

G=(VE)

™

(=g

12

Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
. empty MST
. all vertices marked unconnected
« all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it

b. Ifuand v are not already connected, add (u,v) to the MST
and mark u and v as connected to each other

Sound familiar?

13

Example of for Kruskal

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0 1 1 2 2 3 3 3 3 4

14

Data Structures for Kruskal

« Sorted edge list

(7,4) (2,1) (7,5) (5,6) (5,4) (1,6) (2,7) (2,3) (3,4) (1,5)
0O 1 1 2 2 3 3 3 3 4

 Disjoint Union / Find
— Union(a,b) - merge the disjoint sets named by a and b
— Find(a) returns the name of the set containing a

15

Example of DU/F

X{(,i) m\m\w@w (1,6) (2,7) (2,3) (3.4) (1,5)
1 1 2 2 3 3 3 3 4

16

Kruskal's Algorithm

* Add the cheapest edge that joins disjoint
components

Kruskal’s Algorithm with DU / F

Sort the edges by increasing cost;
Initialize A to be empty;
for each edge (i,J)) chosen in increasing order do
u := Find(i);
Vv = Find());
If not(u = v) then
add (i,) to A;
Union(u,v);

This algorithm will work, but it goes through all the edges.

Is this always necessary?

18

Kruskal code

void Graph: :kruskal () {

_ |V| ops to init. sets
int edgesAccepted = 0; ‘/////”
DisjSet s (NUM VERTICES) ;

IE| heap ops

while (edgesAccepted < NUM;VERTICES,Z/;){
e = smallest weight edge not deleted yet;
// edge e = (u, v)

uset = s.find (u) ;

vset = s.find(v); * 2|E| finds
i1f (uset !'= wvset) {
edgesAccepted++;
s.unionSets (uset, vset);
) S~
: } V| unions

Total Cost:

19

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T.

Suppose T, Is hot minimum:
Pick another spanning tree T, with lower cost than T,
Pick the smallest edge e,=(u,v) in T thatisnotin T

T, already hasapathpinT, fromutov
— Adding e, to T, will create acyclein T,

Pick an edge e, in p that Kruskal’s algorithm considered
after adding e, (must exist: u and v unconnected when e,
considered)

— cost(e,) > cost(e,)
— canreplace e, with e, in T, without increasing cost!

Keep doing this until T, Is identical to T,
— T, must also be minimal — contradiction!

20

MST Application: Clustering

Given a collection of points in an r-
dimensional space, and an integer K,
divide the points into K sets that are
closest together

Distance clustering

* Divide the data set into K subsets to
maximize the distance between any pair of
sets

—dist (S4, S,) = min {dist(x, y) | X In S;, y In S,}

Divide Iinto 2 clusters

Divide into 3 clusters

Divide into 4 clusters

Distance Clustering Algorithm

Let C = {{vi}, {Vo},- . . {vidh T={}
while |C| > K

Lete = (u, v) with uin C; and v in C; be the
minimum cost edge joining distinct sets in C

Replace C; and C; by C; U C,

K-clustering

