CSE 332: Data Abstractions
Union/Find I

Richard Anderson
Spring 2016

Announcements

» Reading for this lecture: Chapter 8.
* Friday’s topic, Minimum Spanning Trees

 Wednesday / Thursday, NP
Completeness

Disjoint Set ADT

» Data: set of pairwise disjoint sets.

* Required operations
— Union — merge two sets to create their union
— Find — determine which set an item appears in

Disjoint Sets and Naming

* Maintain a set of pairwise disjoint sets.
-{3,5,7}, {4,2,8}, {9}, {1,6}

« Each set has a uniqgue name: one of its
members (for convenience)
—-{3,5,7},{4,2,8}, {9}, {1,6}

Union / Find

* Union(x,y) — take the union of two sets
named x and y
- {3.2,7},{4,2,8}, {9}, {1.6}
— Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},
* Find(x) — return the name of the set
containing X.
- {3.5,7,1,6}, {4,2,8}, {9},
— Find(1) = 5
— Find(4) = 8

Union/Find Trade-off

e Known result:

— Find and Union cannot both be done Iin worst-
case O(1) time with any data structure.

* We will instead aim for good amortized
complexity.

* For m operations on n elements:
— Target complexity: O(m) I.e. O(1) amortized

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Initial state @ @ @ @ @ @ @
ISr:;(i(remediate @% @ /(R
(2 5 @

Roots are the names of each set. Cg

Operations

Find(x) follow x to the root and return the root.

Union(i, J) - assuming | and | roots, point | to I.
@ €)
\ a
(2 /@ (4
(&

Simple Implementation

 Array of indices

1 2 3 45 6 7 up[x] = -1 means
up [-1]1]- - X is a root.

LA
&

=
~
~
ol
=

A Bad Case

© @ 6 - W

6 /@ @ Unici)n(2,3)

@))
6' /,® Union(n-1,n)

ﬁ

) Find(1) n steps!!

5

Union(1,2)

10

Amortized Cost

» Cost of n Union operations followed by n
Find operations is n?

* O(Nn) per operation

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
* |mprove Union so that Find only takes worst
case time of ©(log n).

2. Path compression

* |mprove Find so that, with Union-by-size,
Find takes amortized time of almost ©(1).

12

Union-by-Size

Union-by-size
— Always point the smaller tree to the root of the

larger tree
S-Union(7,1)
@ o ‘
\ a
(2 5 @

.

13

Example Again

@ @ ® - @
S-Union(1,2)

@ ® " W
6’ S-Union(2,3)

o

7 _
S-Union(n-1,n)
6@% Find(1) constanttime

14

Analysis of Union-by-Size

« Theorem: With union-by-size an up-tree of height h has size
at least 2",

* Proof by induction
— Base case: h = 0. The up-tree has one node, 2° =1
— Inductive hypothesis: Assume true for h-1

— Observation: tree gets taller only as a result of a union.

T =S-Union(T4,T>,)

1

15

Analysis of Union-by-Size

* What Is worst case complexity of Find(x) In
an up-tree forest of n nodes?

* (Amortized complexity is no better.)

16

Worst Case for Union-by-Size

n/2 Unions-by-size

9D 3D ISP S g g

n/4 Unions-by-size

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Unions-by-size
o i o i\p log,n
*: !
" Find

If there are n = 2K nodes then the longest
path from leaf to root has length k.

18

Array Implementation
2 1

@
(&

Can store separate size array:

1 2 345 6 7
up [-1/1|-1/7|7|5]-1
size | 2 1 4

@ 3) ’
\ /@/@@

19

Elegant Array Implementation
2 1

L ® 4
e g
(&

Better, store sizes in the up array:

1 23456 7
up [-2]1]-1]7]7]5]-4

Negative up-values correspond to sizes of roots. .

Code for Union-by-Size

S-Union (i, Jj) {
// Collect sizes
si = -upl[1i];
sj = -upl[]l’

// verify i and j are roots
assert(si >=0 && sj >=0)

// point smaller sized tree to
// root of larger, update size
if (si < sj) {

up[i] = J;

up[j] = -(si + sj);
else {

up[]j] = 1;

up[1i] -(si + s3J);

}

Path Compression

« To improve the amortized complexity, we’ll borrow an idea
from splay trees:

— When going up the tree, improve nodes on the path!

* On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

(D) D 7
é@ @/@&@ PC-Find(3) }@ %)@

o e

> 22

Self-Adjustment Works

=
VIV VNN

PC-Find(x)

QALY
04444444

Draw the result of FInd(5):

24

Code for Path Compression Find

PC-Find (i) {
//£find root
J = 1;
while (up[j] >= 0) {
J = uplil;
root = j;

//compress path
if (1 '= root) {
parent = upl[i];
while (parent != root) {
up[i] = root;
i = parent;
parent = up[parent];
}
}

return (root)

}

25

Complexity of
Union-by-Size + Path Compression

« Worst case time complexity for...
— ...a single Union-by-size is:
— ...a single PC-Find Is:

* Time complexity for m > n operations on n
elements has been shown to be O(m log* n).

[See Welss for proof.]
— Amortized complexity is then O(log* n)
— What is log* ?

26

log* n

log* n = number of times you need to apply
log to bring value down to at most 1

og*¥2=1

0g* 4 = log* 22 =2

og* 16 = log* 22° = 3 (log log log 16 = 1)

0g* 65536 = log* 22> = 4 (log log log log 65536 = 1)
0g* 209936 = ~ log* (2 x 101°728) = 5

log * n <5 for all reasonable n.

27

The Tight Bound

In fact, Tarjan showed the time complexity for
m > n operations on n elements Is:

O(m a(m, n))
Amortized complexity is then ®(a(m, n)) .
What is a(m, n)?
— Inverse of Ackermann’s function.

— For reasonable values of m, n, grows
even slower than log * n. So, it's even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis!

28

