CSE 332: Data Abstractions Union/Find II

Richard Anderson Spring 2016

Announcements

- Reading for this lecture: Chapter 8.
- Friday's topic, Minimum Spanning Trees
- Wednesday / Thursday, NP Completeness

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
- Union - merge two sets to create their union
- Find - determine which set an item appears in

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name: one of its members (for convenience)
$-\{3, \underline{5}, 7\},\{4,2,8\},\{9\},\{1,6\}$

Union / Find

- Union (x, y) - take the union of two sets named x and y
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
- Union(5,1) $\{3,5,7,1,6\},\{4,2,8\},\{\underline{9}\}$,
- Find (x) - return the name of the set containing x.
$-\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) $=5$
$-\operatorname{Find}(4)=8$

Union/Find Trade-off

- Known result:
- Find and Union cannot both be done in worstcase $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
- Target complexity: $O(m)$ i.e. $O(1)$ amortized

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

(2)

Intermediate state

Operations

Find (x) follow x to the root and return the root. Union(i, j) - assuming i and j roots, point j to i.

Simple Implementation

- Array of indices

1 2 3 4 5 6 7 up $[\mathrm{x}]=-1$ means -1 1 -1 7 7 5 -1								x is a root.

A Bad Case

(1) (2) (3) \cdots n

Union $(1,2)$

Union(2,3)

Find(1) n steps!!

Amortized Cost

- Cost of n Union operations followed by n Find operations is n^{2}
- $\Theta(\mathrm{n})$ per operation

Two Big Improvements

Can we do better? Yes!

1. Union-by-size

- Improve Union so that Find only takes worst case time of $\Theta(\log n)$.

2. Path compression

- Improve Find so that, with Union-by-size, Find takes amortized time of almost $\Theta(1)$.

Union-by-Size

Union-by-size

- Always point the smaller tree to the root of the larger tree

> S-Union(7,1)

(3) ${ }^{1}$

Example Again

(1) (2) (3) \cdots n

Find(1) constant time

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^{h}.
- Proof by induction
- Base case: $h=0$. The up-tree has one node, $2^{0}=1$
- Inductive hypothesis: Assume true for h-1
- Observation: tree gets taller only as a result of a union.

Analysis of Union-by-Size

- What is worst case complexity of Find (x) in an up-tree forest of n nodes?
- (Amortized complexity is no better.)

Worst Case for Union-by-Size

n/2 Unions-by-size

n/4 Unions-by-size

Example of Worst Cast (cont')

After $n-1=n / 2+n / 4+\ldots+1$ Unions-by-size

If there are $n=2^{k}$ nodes then the longest path from leaf to root has length k.

Array Implementation

2

Can store separate size array:

Elegant Array Implementation

2

Better, store sizes in the up array:

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```
S-Union(i,j){
    // Collect sizes
    si = -up[i];
    sj = -up[j];
```

 // verify \(i\) and \(j\) are roots
 assert(si >=0 \&\& sj >=0)
 // point smaller sized tree to
 // root of larger, update size
 if (si < sj) \{
 up [i] = j;
 \(u p[j]=-(s i+s j) ;\)
 else \{
 up[j] = i;
 \(u p[i]=-(s i+s j) ;\)
 \}
 \}

Path Compression

- To improve the amortized complexity, we'll borrow an idea from splay trees:
- When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."

Self-Adjustment Works

$\xrightarrow{\text { PC-Find }(x)}$

Draw the result of Find(5):

Code for Path Compression Find

```
PC-Find(i) {
    //find root
    j = i;
    while (up[j] >= 0) {
        j = up[j];
    root = j;
    //compress path
    if (i != root) {
        parent = up[i];
        while (parent != root) {
            up[i] = root;
            i = parent;
                parent = up[parent];
        }
    }
    return(root)
}
```


Complexity of

 Union-by-Size + Path Compression

 Union-by-Size + Path Compression}

- Worst case time complexity for...
- ...a single Union-by-size is:
- ...a single PC-Find is:
- Time complexity for $m \geq n$ operations on n elements has been shown to be $\mathrm{O}\left(m \log ^{*} n\right)$. [See Weiss for proof.]
- Amortized complexity is then $\mathrm{O}\left(\log ^{*} n\right)$
- What is log*?

$\log ^{*} n$

$\log ^{*} \boldsymbol{n}=$ number of times you need to apply log to bring value down to at most 1

$$
\log ^{*} 2=1
$$

$$
\log ^{*} 4=\log ^{*} 2^{2}=2
$$

$$
\log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1)
$$

$$
\log ^{*} 65536=\log ^{*} 2^{2^{22}}=4(\log \log \log \log 65536=1)
$$

$$
\log ^{*} 2^{65536}=\ldots \ldots \ldots \ldots \ldots \approx \log ^{*}\left(2 \times 10^{19,728}\right)=5
$$

$\log * n \leq 5$ for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for $m \geq n$ operations on n elements is:

$$
\Theta(m \alpha(m, n))
$$

Amortized complexity is then $\Theta(\alpha(m, n))$.
What is $\alpha(m, n)$?

- Inverse of Ackermann's function.
- For reasonable values of m, n, grows even slower than \log * n. So, it's even "more constant."

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!

