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CSE 332: Data Structures 

Disjoint Set Union/Find  
 

Richard Anderson 

Spring 2016 

Announcements 

• Reading for this lecture: Chapter 8. 
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Dijkstra’s Algorithm 

S = {};    d[s] = 0;     d[v] = infinity for v != s 

While S != V 

 Choose v in V-S with minimum d[v] 

 Add v to S 

 For each  w in the neighborhood of v 

  d[w] = min(d[w], d[v] + c(v, w)) 
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Assume all edges have 

non-negative cost 

Review from last week 

Simulate Dijkstra’s algorithm 

(starting from s) on the graph 
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http://www.cs.utexas.edu/users/EWD/ 

• Edsger Wybe Dijkstra was one of the most 
influential members of computing science's 
founding generation. Among the domains in 
which his scientific contributions are 
fundamental are  
– algorithm design  

– programming languages  

– program design  

– operating systems  

– distributed processing  

– formal specification and verification  

– design of mathematical arguments  

 

Why do we worry about 

negative cost edges?? 
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Graph Algorithms / Data 

Structures 
• Dijkstra’s Algorithm for Shortest Paths 

– Heaps,  O(m log n) runtime 

• Kruskal’s Algorithm for Minimum Spanning 

Tree 

– Union-Find data structure 

 

Making Connections 
You have a set of nodes (numbered 1-9) on a network.  You 
are given a sequence of pairwise connections between them: 

 

 3-5 

 4-2 

 1-6 

 5-7  

 4-8 

 3-7 

 

Q: Are nodes 2 and 4 (indirectly) connected? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections redundant due to 

     indirect connections? 

Q: How many sub-networks do you have? 8 

Making Connections 
Answering these questions is much easier if we create 
disjoint sets of nodes that are connected: 

 

 Start: {1} {2} {3} {4} {5} {6} {7} {8} {9} 

 3-5 

 4-2 

 1-6 

 5-7  

 4-8 

 3-7 

 

Q: Are nodes 2 and 4 (indirectly) connected? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections redundant due to 

     indirect connections? 

Q: How many sub-networks do you have? 
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Applications of Disjoint Sets 

Maintaining disjoint sets in this manner 
arises in a number of areas, including: 

– Networks 

– Transistor interconnects 

– Compilers 

– Image segmentation 

– Building mazes (this lecture) 

– Graph problems 
• Minimum Spanning Trees (upcoming topic in 

this class) 
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Disjoint Set ADT 

• Data: set of pairwise disjoint sets. 

• Required operations 

– Union – merge two sets to create their union 

– Find – determine which set an item appears in  

• A common operation sequence:  

– Connect two elements if not already connected: 

        if (Find(x) != Find(y)) then Union(x,y) 

Disjoint Sets and Naming 

• Maintain a set of pairwise disjoint sets. 

– {3,5,7} , {4,2,8}, {9}, {1,6} 

• Each set has a unique name: one of its 

members (for convenience) 

– {3,5,7} , {4,2,8}, {9}, {1,6} 
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Union 

• Union(x,y) – take the union of two sets 

named x and y 

– {3,5,7} , {4,2,8}, {9}, {1,6} 

– Union(5,1) 

   {3,5,7,1,6}, {4,2,8}, {9},  
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Find 

• Find(x) – return the name of the set 

containing x. 

– {3,5,7,1,6}, {4,2,8}, {9},  

– Find(1) = 5 

– Find(4) = 8 

 

 

14 

Example 

15 

S 

{1,2,7,8,9,13,19} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{14,20,26,27} 

{15,16,21} 

. 

. 

{22,23,24,29,39,32 

  33,34,35,36} 

 

Find(8) = 7 

Find(14) = 20 

S 

{1,2,7,8,9,13,19,14,20 26,27} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{15,16,21} 

. 

. 

{22,23,24,29,39,32 

  33,34,35,36} 

 

Union(7,20) 

Nifty Application: Building Mazes 

Idea: Build a random maze by erasing walls. 
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Building Mazes 

• Pick Start and End 

17 

Start 

End 

Building Mazes 

• Repeatedly pick random walls to delete. 

18 

Start 

End 
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Desired Properties 

• None of the boundary is deleted (except at 

“start” and “end”). 

 

• Every cell is reachable from every other cell. 

 

• There are no cycles – no cell can reach itself by 

a path unless it retraces some part of the path. 
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A Cycle 

20 

Start 

End 

A Good Solution 

21 

Start 

End 

A Hidden Tree 

22 

Start 

End 

Number the Cells 

23 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

We start with disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }. 

We have all possible walls between neighbors  

W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total. 

Idea: Union-find operations will be done on cells. 

 

Maze Building with Disjoint Union/Find 

Algorithm sketch: 

1. Choose wall at random. 

   → Boundary walls are not in wall list,  

            so left alone 

2. Erase wall if the neighbors are in disjoint sets. 

   → Avoids cycles 

3. Take union of those sets. 

4. Go to 1, iterate until there is only one set. 

   → Every cell reachable from every other cell. 

 

 

 

24 
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Pseudocode 
• S = set of sets of connected cells 

– Initialize to {{1}, {2}, …, {n}} 

• W = set of walls 
– Initialize to set of all walls {{1,2},{1,7}, …} 

• Maze = set of walls in maze (initially empty) 
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While there is more than one set in S 

   Pick a random non-boundary wall (x,y) and remove from W 

   u = Find(x); 

   v = Find(y); 

   if u  v then 

      Union(u,v) 

   else 

      Add wall (x,y) to Maze 

Add remaining members of W to Maze 

Example Step 

26 

Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

S 

{1,2,7,8,9,13,19} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{14,20,26,27} 

{15,16,21} 

. 

. 

{22,23,24,29,30,32 

  33,34,35,36} 

 

Pick (8,14) 

Example 
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S 

{1,2,7,8,9,13,19} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{14,20,26,27} 

{15,16,21} 

. 

. 

{22,23,24,29,39,32 

  33,34,35,36} 

 

Find(8) = 7 

Find(14) = 20 

S 

{1,2,7,8,9,13,19,14,20 26,27} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{15,16,21} 

. 

. 

{22,23,24,29,39,32 

  33,34,35,36} 

 

Union(7,20) 

Example 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

S 

{1,2,7,8,9,13,19 

     14,20,26,27} 

{3} 

{4} 

{5} 

{6} 

{10} 

{11,17} 

{12} 

{15,16,21} 

. 

. 

{22,23,24,29,39,32 

  33,34,35,36} 

 

Pick (19,20) 

Example at the End 
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Start 

End 

1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

S 

{1,2,3,4,5,6,7,… 36} 

Remaining  

    walls in W 

Previously added  

    to Maze 

Data structure for disjoint sets? 

• Represent:   {3,5,7} , {4,2,8}, {9}, {1,6} 

• Support:  find(x), union(x,y) 
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Union/Find Trade-off 

• Known result:  

– Find and Union cannot both be done in worst-

case O(1) time with any data structure. 

• We will instead aim for good amortized 

complexity. 

• For m operations on n elements: 

– Target complexity: O(m)  i.e. O(1) amortized 
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Tree-based Approach 

Each set is a tree 

• Root of each tree is the set name. 

 

 

 

 

• Allow large fanout  (why?) 
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Up-Tree for DS Union/Find 
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1 2 3 4 5 6 7 Initial state 

1 

2 

3 

4 5 

6 

7 Intermediate 

state 

Roots are the names of each set. 

Observation: we will only traverse these trees upward 
from any given node to find the root. 

 

Idea: reverse the pointers (make them point up from 
child to parent).  The result is an up-tree. 

Find Operation 

Find(x) follow x to the root and return the root. 
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Union Operation 

Union(i, j) - assuming i and j roots, point i to j.             
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Simple Implementation 

• Array of indices 
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up[x] = -1 means 

x is a root. 
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Implementation 

int Find(int x) { 

  while(up[x] >= 0) { 

    x = up[x]; 

  } 

  return x; 

} 

void Union(int x, int y) { 

  assert(up[x]<0 && up[y]<0); 

  up[x] = y; 

} 

runtime for Union: runtime for Find: 

Amortized complexity is no better. 

 A Bad Case 
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1 2 3 n … 
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Union(1,2) 
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3 n 

Union(2,3) 

Union(n-1,n) 

… 

… 

1 

2 

3 

n 

: 

: 

Find(1)   n steps!! 
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Two Big Improvements 

Can we do better?     Yes! 

 

1. Union-by-size 
• Improve Union so that Find only takes worst 

case time of Θ(log n). 

 

2. Path compression 
• Improve Find so that, with Union-by-size,  

     Find takes amortized time of almost Θ(1). 
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Union-by-Size 

Union-by-size 

– Always point the smaller tree to the root of the 
larger tree 

41 
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S-Union(7,1) 

2 4 1 

Example Again 
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1 2 3 n 

1 

2 3 n 

S-Union(1,2) 

1 

2 

3 

n 

S-Union(2,3) 

S-Union(n-1,n) 

… 

… : 

: 

1 

2 

3 n 

… 

Find(1)   constant time 
… 
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Analysis of Union-by-Size 

• Theorem: With union-by-size an up-tree of height h has size 

at least 2h. 

• Proof by induction 

– Base case: h = 0. The up-tree has one node, 20 = 1 

– Inductive hypothesis: Assume true for h-1 

– Observation: tree gets taller only as a result of a union. 

43 

h-1 T1 T2 

T = S-Union(T1,T2) 

≤h-1 

Analysis of Union-by-Size 

• What is worst case complexity of Find(x) in 

an up-tree forest of n nodes? 

 

 

 

 

 

• (Amortized complexity is no better.) 
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Worst Case for Union-by-Size 

45 

n/2 Unions-by-size 

 

 

 

n/4 Unions-by-size 

Example of Worst Cast (cont’) 
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After n -1 = n/2 + n/4 + …+ 1 Unions-by-size 

Find 
If there are n = 2k nodes then the longest 

path from leaf to root has length k. 

log2n 

Array Implementation 

47 
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7 7 5 -1 

4 

1   2   3  4  5   6   7   

up 
size 

Can store separate size array: 

2 4 1 

Elegant Array Implementation 

48 
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-2 1 -1 7 7 5 -4 
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up 

Better, store sizes in the up array: 

Negative up-values correspond to sizes of roots. 

2 4 1 
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Code for Union-by-Size 

49 

S-Union(i,j){ 

  // Collect sizes 

  si = -up[i]; 

  sj = -up[j]; 

 

  // verify i and j are roots 

  assert(si >=0 && sj >=0) 

  // point smaller sized tree to 

  // root of larger, update size 

  if (si < sj) { 

    up[i] = j; 

    up[j] = -(si + sj); 

  else { 

    up[j] = i; 

    up[i] = -(si + sj); 

  } 

} 

Path Compression 
• To improve the amortized complexity, we’ll borrow an idea 

from splay trees: 

– When going up the tree, improve nodes on the path! 

• On a Find operation point all the nodes on the search path 
directly to the root.  This is called “path compression.” 
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PC-Find(3) 
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Self-Adjustment Works 

51 

PC-Find(x) 

x 

Draw the result of Find(5): 
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Code for Path Compression Find 

53 

PC-Find(i) { 

  //find root 

  j = i; 

   while (up[j] >= 0) {  

    j = up[j]; 

  root = j; 

 

  //compress path 

  if (i != root) { 

    parent = up[i]; 

    while (parent != root) { 

      up[i] = root; 

      i = parent; 

      parent = up[parent]; 

    } 

  } 

  return(root) 

} 

Complexity of  

Union-by-Size + Path Compression 

• Worst case time complexity for… 

– …a single Union-by-size is: 

– …a single PC-Find is:  

 

• Time complexity for m  n operations on n 

elements has been shown to be O(m log* n).   

    [See Weiss for proof.]  

– Amortized complexity is then O(log* n)  

– What is log* ? 
54 
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log* n 

 log* n = number of times you need to apply 

               log to bring value down to at most 1 

 

    log* 2 = 1 

     log* 4 = log* 22 = 2 

    log* 16 = log* 222 = 3          (log log log 16 = 1) 

    log* 65536 = log* 2222
 = 4   (log log log log 65536 = 1) 

    log* 265536 = …………… ≈ log* (2 x 1019,728) = 5 

 

  log * n ≤ 5 for all reasonable n.  
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The Tight Bound 

In fact, Tarjan showed the time complexity for 
m  n operations on n elements is: 

 Q(m a(m, n))  

Amortized complexity is then Q(a(m, n)) . 

What is a(m, n)? 

– Inverse of Ackermann’s function.   

– For reasonable values of m, n, grows 
even slower than log * n.  So, it’s even 
“more constant.” 

Proof is beyond scope of this class.  A simple 
algorithm can lead to incredibly hardcore 
analysis! 56 


