
1

CSE 332: Data Structures

Disjoint Set Union/Find

Richard Anderson

Spring 2016

Announcements

• Reading for this lecture: Chapter 8.

2

Dijkstra’s Algorithm

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

 Choose v in V-S with minimum d[v]

 Add v to S

 For each w in the neighborhood of v

 d[w] = min(d[w], d[v] + c(v, w))

s

u

v

z

y

x

1

4

3

2

3

2

1

2

1 0

1

2 2

5

4

Assume all edges have

non-negative cost

Review from last week

Simulate Dijkstra’s algorithm

(starting from s) on the graph

1

2

3

4

5

Round
Vertex

Added
s a b c d

b d

c a

1

1

1

2 3

4

6

1

3

4

s

http://www.cs.utexas.edu/users/EWD/

• Edsger Wybe Dijkstra was one of the most
influential members of computing science's
founding generation. Among the domains in
which his scientific contributions are
fundamental are
– algorithm design

– programming languages

– program design

– operating systems

– distributed processing

– formal specification and verification

– design of mathematical arguments

Why do we worry about

negative cost edges??

s

w

v

t

u

x

y

z

2

Graph Algorithms / Data

Structures
• Dijkstra’s Algorithm for Shortest Paths

– Heaps, O(m log n) runtime

• Kruskal’s Algorithm for Minimum Spanning

Tree

– Union-Find data structure

Making Connections
You have a set of nodes (numbered 1-9) on a network. You
are given a sequence of pairwise connections between them:

 3-5

 4-2

 1-6

 5-7

 4-8

 3-7

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to

 indirect connections?

Q: How many sub-networks do you have? 8

Making Connections
Answering these questions is much easier if we create
disjoint sets of nodes that are connected:

 Start: {1} {2} {3} {4} {5} {6} {7} {8} {9}

 3-5

 4-2

 1-6

 5-7

 4-8

 3-7

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to

 indirect connections?

Q: How many sub-networks do you have?
9

Applications of Disjoint Sets

Maintaining disjoint sets in this manner
arises in a number of areas, including:

– Networks

– Transistor interconnects

– Compilers

– Image segmentation

– Building mazes (this lecture)

– Graph problems
• Minimum Spanning Trees (upcoming topic in

this class)

 10

11

Disjoint Set ADT

• Data: set of pairwise disjoint sets.

• Required operations

– Union – merge two sets to create their union

– Find – determine which set an item appears in

• A common operation sequence:

– Connect two elements if not already connected:

 if (Find(x) != Find(y)) then Union(x,y)

Disjoint Sets and Naming

• Maintain a set of pairwise disjoint sets.

– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name: one of its

members (for convenience)

– {3,5,7} , {4,2,8}, {9}, {1,6}

12

3

Union

• Union(x,y) – take the union of two sets

named x and y

– {3,5,7} , {4,2,8}, {9}, {1,6}

– Union(5,1)

 {3,5,7,1,6}, {4,2,8}, {9},

13

Find

• Find(x) – return the name of the set

containing x.

– {3,5,7,1,6}, {4,2,8}, {9},

– Find(1) = 5

– Find(4) = 8

14

Example

15

S

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

.

.

{22,23,24,29,39,32

 33,34,35,36}

Find(8) = 7

Find(14) = 20

S

{1,2,7,8,9,13,19,14,20 26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

.

.

{22,23,24,29,39,32

 33,34,35,36}

Union(7,20)

Nifty Application: Building Mazes

Idea: Build a random maze by erasing walls.

16

Building Mazes

• Pick Start and End

17

Start

End

Building Mazes

• Repeatedly pick random walls to delete.

18

Start

End

4

Desired Properties

• None of the boundary is deleted (except at

“start” and “end”).

• Every cell is reachable from every other cell.

• There are no cycles – no cell can reach itself by

a path unless it retraces some part of the path.

19

A Cycle

20

Start

End

A Good Solution

21

Start

End

A Hidden Tree

22

Start

End

Number the Cells

23

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We start with disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }.

We have all possible walls between neighbors

W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total.

Idea: Union-find operations will be done on cells.

Maze Building with Disjoint Union/Find

Algorithm sketch:

1. Choose wall at random.

 → Boundary walls are not in wall list,

 so left alone

2. Erase wall if the neighbors are in disjoint sets.

 → Avoids cycles

3. Take union of those sets.

4. Go to 1, iterate until there is only one set.

 → Every cell reachable from every other cell.

24

5

Pseudocode
• S = set of sets of connected cells

– Initialize to {{1}, {2}, …, {n}}

• W = set of walls
– Initialize to set of all walls {{1,2},{1,7}, …}

• Maze = set of walls in maze (initially empty)

25

While there is more than one set in S

 Pick a random non-boundary wall (x,y) and remove from W

 u = Find(x);

 v = Find(y);

 if u  v then

 Union(u,v)

 else

 Add wall (x,y) to Maze

Add remaining members of W to Maze

Example Step

26

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

.

.

{22,23,24,29,30,32

 33,34,35,36}

Pick (8,14)

Example

27

S

{1,2,7,8,9,13,19}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{14,20,26,27}

{15,16,21}

.

.

{22,23,24,29,39,32

 33,34,35,36}

Find(8) = 7

Find(14) = 20

S

{1,2,7,8,9,13,19,14,20 26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

.

.

{22,23,24,29,39,32

 33,34,35,36}

Union(7,20)

Example

28

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S

{1,2,7,8,9,13,19

 14,20,26,27}

{3}

{4}

{5}

{6}

{10}

{11,17}

{12}

{15,16,21}

.

.

{22,23,24,29,39,32

 33,34,35,36}

Pick (19,20)

Example at the End

29

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S

{1,2,3,4,5,6,7,… 36}

Remaining

 walls in W

Previously added

 to Maze

Data structure for disjoint sets?

• Represent: {3,5,7} , {4,2,8}, {9}, {1,6}

• Support: find(x), union(x,y)

30

6

Union/Find Trade-off

• Known result:

– Find and Union cannot both be done in worst-

case O(1) time with any data structure.

• We will instead aim for good amortized

complexity.

• For m operations on n elements:

– Target complexity: O(m) i.e. O(1) amortized

31

Tree-based Approach

Each set is a tree

• Root of each tree is the set name.

• Allow large fanout (why?)

32

Up-Tree for DS Union/Find

33

1 2 3 4 5 6 7 Initial state

1

2

3

4 5

6

7 Intermediate

state

Roots are the names of each set.

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Find Operation

Find(x) follow x to the root and return the root.

34

1

2

3

4 5

6

7

Union Operation

Union(i, j) - assuming i and j roots, point i to j.

35

1

2

3

4 5

6

7

Simple Implementation

• Array of indices

36

1

2

3

4 5

6

7

1 2 3 4 5 6 7

up

up[x] = -1 means

x is a root.

7

37

Implementation

int Find(int x) {

 while(up[x] >= 0) {

 x = up[x];

 }

 return x;

}

void Union(int x, int y) {

 assert(up[x]<0 && up[y]<0);

 up[x] = y;

}

runtime for Union: runtime for Find:

Amortized complexity is no better.

 A Bad Case

38

1 2 3 n …

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:

:

Find(1) n steps!!

39

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
• Improve Union so that Find only takes worst

case time of Θ(log n).

2. Path compression
• Improve Find so that, with Union-by-size,

 Find takes amortized time of almost Θ(1).

40

Union-by-Size

Union-by-size

– Always point the smaller tree to the root of the
larger tree

41

1

2

3

4 5

6

7

S-Union(7,1)

2 4 1

Example Again

42

1 2 3 n

1

2 3 n

S-Union(1,2)

1

2

3

n

S-Union(2,3)

S-Union(n-1,n)

…

… :

:

1

2

3 n

…

Find(1) constant time
…

8

Analysis of Union-by-Size

• Theorem: With union-by-size an up-tree of height h has size

at least 2h.

• Proof by induction

– Base case: h = 0. The up-tree has one node, 20 = 1

– Inductive hypothesis: Assume true for h-1

– Observation: tree gets taller only as a result of a union.

43

h-1 T1 T2

T = S-Union(T1,T2)

≤h-1

Analysis of Union-by-Size

• What is worst case complexity of Find(x) in

an up-tree forest of n nodes?

• (Amortized complexity is no better.)
44

Worst Case for Union-by-Size

45

n/2 Unions-by-size

n/4 Unions-by-size

Example of Worst Cast (cont’)

46

After n -1 = n/2 + n/4 + …+ 1 Unions-by-size

Find
If there are n = 2k nodes then the longest

path from leaf to root has length k.

log2n

Array Implementation

47

1

2

3

4 5

6

7

-1

2

1 -1

1

7 7 5 -1

4

1 2 3 4 5 6 7

up
size

Can store separate size array:

2 4 1

Elegant Array Implementation

48

1

2

3

4 5

6

7

-2 1 -1 7 7 5 -4

1 2 3 4 5 6 7

up

Better, store sizes in the up array:

Negative up-values correspond to sizes of roots.

2 4 1

9

Code for Union-by-Size

49

S-Union(i,j){

 // Collect sizes

 si = -up[i];

 sj = -up[j];

 // verify i and j are roots

 assert(si >=0 && sj >=0)

 // point smaller sized tree to

 // root of larger, update size

 if (si < sj) {

 up[i] = j;

 up[j] = -(si + sj);

 else {

 up[j] = i;

 up[i] = -(si + sj);

 }

}

Path Compression
• To improve the amortized complexity, we’ll borrow an idea

from splay trees:

– When going up the tree, improve nodes on the path!

• On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

50

1

2

3

4 5

6

7 1

2 3 4 5 6

7

PC-Find(3)

8 9

10

8 9 10

Self-Adjustment Works

51

PC-Find(x)

x

Draw the result of Find(5):

52

6 8 1

2

3

4

5

7

9

Code for Path Compression Find

53

PC-Find(i) {

 //find root

 j = i;

 while (up[j] >= 0) {

 j = up[j];

 root = j;

 //compress path

 if (i != root) {

 parent = up[i];

 while (parent != root) {

 up[i] = root;

 i = parent;

 parent = up[parent];

 }

 }

 return(root)

}

Complexity of

Union-by-Size + Path Compression

• Worst case time complexity for…

– …a single Union-by-size is:

– …a single PC-Find is:

• Time complexity for m  n operations on n

elements has been shown to be O(m log* n).

 [See Weiss for proof.]

– Amortized complexity is then O(log* n)

– What is log* ?
54

10

log* n

 log* n = number of times you need to apply

 log to bring value down to at most 1

 log* 2 = 1

 log* 4 = log* 22 = 2

 log* 16 = log* 222 = 3 (log log log 16 = 1)

 log* 65536 = log* 2222
 = 4 (log log log log 65536 = 1)

 log* 265536 = …………… ≈ log* (2 x 1019,728) = 5

 log * n ≤ 5 for all reasonable n.

 55

The Tight Bound

In fact, Tarjan showed the time complexity for
m  n operations on n elements is:

 Q(m a(m, n))

Amortized complexity is then Q(a(m, n)) .

What is a(m, n)?

– Inverse of Ackermann’s function.

– For reasonable values of m, n, grows
even slower than log * n. So, it’s even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis! 56

