CSE 332: Data Structures Disjoint Set Union/Find

Richard Anderson
Spring 2016

Review from last week

Dijkstra's Algorithm

$S=\{ \} ; \quad d[s]=0 ; \quad d[v]=$ infinity for $v!=s$
While S ! V
Choose v in V-S with minimum d[v]
Add v to S
For each w in the neighborhood of v $d[w]=\min (d[w], d[v]+c(v, w))$

Assume all edges have non-negative cost

Announcements

- Reading for this lecture: Chapter 8.

Round	$\underbrace{\substack{\text { Added }}}_{\text {Verrex }}$	s	a	b	c	d
1						
2						
3						
4						
5						

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
- algorithm design
- programming languages
- program design
- operating systems
- distributed processing
- formal specification and verification
- design of mathematical arguments

Simulate Dijkstra's algorithm (starting from s) on the graph

Graph Algorithms / Data Structures

- Dijkstra's Algorithm for Shortest Paths - Heaps, O(m log n) runtime
- Kruskal's Algorithm for Minimum Spanning Tree
- Union-Find data structure

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

```
3-5
4-2
1-6
5-7
4-8
3-7
```

Q: Are nodes 2 and 4 (indirectly) connected?
Q: How about nodes 3 and 8 ?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Making Connections

Answering these questions is much easier if we create disjoint sets of nodes that are connected:

Start: $\{1\}\{2\}\{3\}\{4\}\{5\}\{6\}\{7\}\{8\}\{9\}$
3-5
4-2
1-6
5-7
4-8
3-7
Q: Are nodes 2 and 4 (indirectly) connected?
Q: How about nodes 3 and 8?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
- Union - merge two sets to create their union
- Find - determine which set an item appears in
- A common operation sequence:
- Connect two elements if not already connected:
if $(\operatorname{Find}(\mathrm{x})!=\operatorname{Find}(\mathrm{y}))$ then Union (x, y)

Applications of Disjoint Sets

Maintaining disjoint sets in this manner
arises in a number of areas, including:
-Networks

- Transistor interconnects
- Compilers
- Image segmentation
-Building mazes (this lecture)
- Graph problems
- Minimum Spanning Trees (upcoming topic in this class)

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name: one of its members (for convenience)
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$

Union

- Union (x, y) - take the union of two sets named x and y
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Union(5,1)
$\{3,5,7,1,6\},\{4,2,8\},\{9\}$,

Find

- Find (x) - return the name of the set containing x.
$-\{3,5,7,1,6\},\{4,2,8\},\{9\}$,
- Find(1) $=5$
- Find(4) $=8$

Nifty Application: Building Mazes
Idea: Build a random maze by erasing walls.

Building Mazes

- Pick Start and End

Building Mazes

- Repeatedly pick random walls to delete.

Desired Properties

- None of the boundary is deleted (except at "start" and "end").
- Every cell is reachable from every other cell.
- There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.

A Good Solution

Start

A Hidden Tree

Number the Cells
We start with disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$.
We have all possible walls between neighbors $W=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ walls total.

Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Idea: Union-find operations will be done on cells. ${ }^{23}$

Maze Building with Disjoint Union/Find

Algorithm sketch:

1. Choose wall at random.
\rightarrow Boundary walls are not in wall list, so left alone
2. Erase wall if the neighbors are in disjoint sets.
\rightarrow Avoids cycles
3. Take union of those sets.
4. Go to 1 , iterate until there is only one set.
\rightarrow Every cell reachable from every other cell.

Pseudocode

- $S=$ set of sets of connected cells
- Initialize to $\{\{1\},\{2\}, \ldots,\{n\}\}$
- $\mathrm{W}=$ set of walls
- Initialize to set of all walls $\{\{1,2\},\{1,7\}, \ldots\}$
- Maze = set of walls in maze (initially empty)

While there is more than one set in S

Pick a random non-boundary wall (x, y) and remove from W $\mathrm{u}=\mathrm{Find}(\mathrm{x})$;
$v=\operatorname{Find}(y)$;
if $u \neq v$ then
Union(u,v)
else
Add wall (x, y) to Maze
Add remaining members of W to Maze

Example Step

Pick $(8,14)$

$$
\begin{array}{ll|l|l|l|l|}
\hline \text { Start } & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}
$$

S
\{1,2,7,8,9,13,19\}
$\{3\}$
$\{4\}$
$\{4\}$
$\{5\}$
$\{6\}$
$\left\{\begin{array}{l}\{6\} \\ \{10\}\end{array}\right.$
$\left\{\begin{array}{l}\{10\} \\ \{11,17\}\end{array}\right.$
$\{12\}$
$\{14, \underline{20}, 26,27\}$
$\{15,16,21\}$
$\{22,23,24,29,30,32$ $33, \underline{34}, 35,36\} \quad 26$

Example		
S $\{1,2,7,8,9,13,19\}$ \{3\} \{4\} \{5\} \{6\} \{10\} $\{11,17\}$ \{12\} $\{14, \underline{20}, 26,27\}$ \{15,16,21\} \{22,23,24,29,39,32 $33,34,35,36\}$	$\begin{aligned} & \begin{array}{l} \operatorname{Find}(8)=7 \\ \text { Find }(14)=20 \end{array} \\ & \text { Union }(7,20) \end{aligned}$	$\begin{aligned} & \text { S } \\ & \{1,2,7,8,9,13,19,14,2026,27\} \\ & \{\underline{3}\} \\ & \{4\} \\ & \{5\} \\ & \{\underline{6}\} \\ & \{10\} \\ & \{11, \underline{17}\} \\ & \{12\} \\ & \{15,16,21\} \\ & \\ & \{22,23,24,29,39,32 \\ & 33,34,35,36\} \end{aligned}$

Example

Pick $(19,20)$

Start

S
$\{1,2,7,8,9,13,19$
$14,20,26,27\}$
$\{3\}$
$\{4\}$
$\{$
$\{4\}$
$\{5\}$
$\{5\}$
$\{5\}$
$\{6\}$
$\{10\}$
$\{10\}$
$\{11,17\}$
$\left\{\begin{array}{l}\{12\} \\ \{15, \underline{16}, 2\end{array}\right.$
\{22,23,24,29,39,32 $33,34,35,36\}$

28

Example at the End

S
$\{1,2,3,4,5,6,7, \ldots 36\}$

Start | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{|ccc|c|ccc|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
& 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 25 & 26 & 33 & 34 & 35 & 36 \\
\hline 31 & 32 & \text { End }
\end{array}
$$

Data structure for disjoint sets?

- Represent: $\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{1,6\}$
- Support: find(x), union (x, y)

Union/Find Trade-off

- Known result:
- Find and Union cannot both be done in worstcase $O(1)$ time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
- Target complexity: $O(m)$ i.e. $O(1)$ amortized

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Roots are the names of each set.
33

Tree-based Approach

Each set is a tree

- Root of each tree is the set name.
- Allow large fanout (why?)

Find Operation

Find (x) follow x to the root and return the root.

Union Operation

Union(i, j) - assuming i and j roots, point i to j .

Simple Implementation

- Array of indices

Two Big Improvements

Can we do better? Yes!

1. Union-by-size

- Improve Union so that Find only takes worst case time of $\Theta(\log n)$.

2. Path compression

- Improve Find so that, with Union-by-size, Find takes amortized time of almost $\Theta(1)$.

Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2^{h}.
- Proof by induction
- Base case: $h=0$. The up-tree has one node, $2^{0}=1$
- Inductive hypothesis: Assume true for h-1
- Observation: tree gets taller only as a result of a union.

Worst Case for Union-by-Size

Array Implementation

Can store separate size array:

Elegant Array Implementation
2

Better, store sizes in the up array:

$$
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\text { up } & -2 & 1 & -1 & 7 & 7 & 5 & -4 \\
\hline
\end{array}
$$

Negative up-values correspond to sizes of roots.

Code for Union-by-Size

```
S-Union(i,j){
    // Collect sizes
    si = -up[i];
    sj = -up[j];
    // verify i and j are roots
    assert(si >=0 && sj >=0)
    // point smaller sized tree to
    // root of larger, update size
    if (si < sj)
        up[i] = j;
        up[j] = - (si + sj);
    else {
        up[j] = i;
        up[i] = -(si + sj)
    }
}

\section*{Path Compression}
- To improve the amortized complexity, we'll borrow an idea from splay trees:
- When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."


\section*{Self-Adjustment Works}


PC-Find \((x)\)

\section*{Code for Path Compression Find}
```

PC-Find(i) {
//find root
j = i;
while (up[j] >= 0) {
j = up[j];
root =j;
//compress path
if (i != root) {
parent = up[i];
while (parent != root) {
up[i] = root;
i = parent;
parent = up[parent];
}
}
return(root)
}

```

\section*{Draw the result of Find(5):}


\section*{Complexity of \\ Union-by-Size + Path Compression}
- Worst case time complexity for...
- ... a single Union-by-size is:
- ...a single PC-Find is:
- Time complexity for \(m \geq n\) operations on \(n\) elements has been shown to be \(\mathrm{O}\left(m \log ^{*} n\right)\).
[See Weiss for proof.]
- Amortized complexity is then \(\mathrm{O}\left(\log ^{*} n\right)\)
- What is log* ?

\section*{\(\log ^{*} n\)}
\(\log ^{*} \boldsymbol{n}=\) number of times you need to apply log to bring value down to at most 1
```

log* 2 = 1
log* 4 = log* 2 2 = 2
log}*16=\mp@subsup{log}{*}{*}\mp@subsup{2}{}{22}=3\quad(\operatorname{log}\operatorname{log}\operatorname{log}16=1
log}\mp@subsup{}{}{*}65536=\mp@subsup{log}{*}{*}\mp@subsup{2}{}{222}=4\quad(\operatorname{log}\operatorname{log}\operatorname{log}\operatorname{log}65536=1
log}\mp@subsup{}{}{*}\mp@subsup{2}{}{65536}=···············..\approx\mp@subsup{\operatorname{log}}{}{*}(2\times1\mp@subsup{0}{}{19,728})=

```
\(\log\) * \(n \leq 5\) for all reasonable \(n\).

\section*{The Tight Bound}

In fact, Tarjan showed the time complexity for \(m \geq n\) operations on \(n\) elements is:
\[
\Theta(m \alpha(m, n))
\]

Amortized complexity is then \(\Theta(\alpha(m, n))\).
What is \(\alpha(m, n)\) ?
- Inverse of Ackermann's function.
- For reasonable values of \(m, n\), grows "even slower than log * \(n\). So, it's even "more constant."
Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!```

