CSE 332: Data Structures
Disjoint Set Union/Find

Richard Anderson
Spring 2016

Announcements

» Reading for this lecture: Chapter 8.

Review from last week

Dijkstra’s Algorithm

S={}; d[s]=0; d[v]=infinityforv!=s
While S 1=V
Choose v in V-S with minimum d[v]
Addvto S
For each w in the neighborhood of v
d[w] = min(d[w], d[v] + c(v, w))

Assume all edges have
non-negative cost

Simulate Dijkstra’s algorithm
(starting from s) on the graph

al b WD

http://www.cs.utexas.edu/users/EWD/

« Edsger Wybe Dijkstra was one of the most
Influential members of computing science's
founding generation. Among the domains in
which his scientific contributions are
fundamental are

— algorithm design

— programming languages

— program design

— operating systems

— distributed processing

— formal specification and verification
— design of mathematical arguments

Why do we worry about
negative cost edges??

Graph Algorithms / Data

Structures

 Dijkstra’s Algorithm for Shortest Paths
— Heaps, O(m log n) runtime

* Kruskal’s Algorithm for Minimum Spanning
ree

— Union-Find data structure

Making Connections

You have a set of nodes (numbered 1-9) on a network. You
are given a sequence of pairwise connections between them:

3-5
4-2
1-6
o-7
4-8
S

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 87

Q: Are any of the paired connections redundant due to
Indirect connections?

Q: How many sub-networks do you have? 8

Making Connections

Answering these questions is much easier If we create
disjoint sets of nodes that are connected:

gtafti {1} {2} {3} {4} {5} {6} {7} {8} {9}
-5
4-2
1-6
5-7
4-8
3-7

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 87

Q: Are any of the paired connections redundant due to
Indirect connections?

Q: How many sub-networks do you have?

Applications of Disjoint Sets

Maintaining disjoint sets In this manner
arises in a number of areas, including:

— Networks

— Transistor interconnects

— Compilers

—Image segmentation

— Building mazes (this lecture)

— Graph

oroblems

« Minimum Spanning Trees (upcoming topic in

this ¢

ass)

10

Disjoint Set ADT

» Data: set of pairwise disjoint sets.

* Required operations
— Union — merge two sets to create their union
— Find — determine which set an item appears in
A common operation sequence:

— Connect two elements if not already connected:
If (Find(x) '= Find(y)) then Union(x,y)

11

Disjoint Sets and Naming

* Maintain a set of pairwise disjoint sets.
-{3,5,7}, {4,2,8}, {9}, {1,6}

« Each set has a uniqgue name: one of its
members (for convenience)
—-{3,5,7},{4,2,8}, {9}, {1.6}

12

Union

* Union(x,y) — take the union of two sets
named x and y
—-{3.5,7},{4.2,8}, {9}, {1.6}
— Union(5,1)
13.9.7,1,6], 14,2,8}, 195,

13

Find

* Find(x) — return the name of the set
containing X.
-{3,5,7,1,6}, {4,2,8}, {9},
— Find(1) =5
— Find(4) = 8

14

Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4} Find(14) = 20 %

{g} - {5}

%ﬂ)} Union(7,20) E%}

0z 7

12 12

s G182

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36)

33,34,35,36}
15

Nifty Application: Building Mazes

ldea: Build a random maze by erasing walls.

16

Building Mazes

 Pick Start and End

Start

End

17

Building Mazes

« Repeatedly pick random walls to delete.

Start

End

18

Desired Properties

None of the boundary is deleted (except at
“start” and “end”).

Every cell is reachable from every other cell.

There are no cycles — no cell can reach itself by
a path unless it retraces some part of the path.

19

Start

A Cycle

End

20

Start

A Good Solution

End

21

A Hidden Tree

Start

End

Number the Cells

We start with disjoint sets S ={ {1}, {2}, {3}, {4},... {36} }.
We have all possible walls between neighbors
W={(1,2), (1,7), (2,8), (2,3), ... } 60 walls total.

Start 1 | 2 | 3 | 4| 5| 6

7 38 9 |10 | 11 | 12

13| 14 | 15| 16 | 17 | 18

19 | 20 | 21 | 22 | 23 | 24

25 | 26 | 27 | 28 | 29 | 30

31 | 32 | 33|34 | 35| 36 End

ldea: Union-find operations will be done on cells. 23

Maze Building with Disjoint Union/Find

Algorithm sketch:
1. Choose wall at random.
— Boundary walls are not in wall list,
so left alone
2. Erase wall if the neighbors are In disjoint sets.
— Avoids cycles
3. Take union of those sets.
4. Go to 1, iterate until there Is only one set.
— Every cell reachable from every other cell.

24

Pseudocode

« S = set of sets of connected cells
— Initialize to {{1}, {2}, ..., {n}}

* W = set of walls
— Initialize to set of all walls {{1,2},{1,7}, ...}

 Maze = set of walls in maze (initially empty)

While there is more than one setin S
Pick a random non-boundary wall (x,y) and remove from W
u = Find(x);
v = Find(y);
If u=vthen
Union(u,V)
else
Add wall (x,y) to Maze
Add remaining members of W to Maze

25

Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3 | 4|5 | 6 {4}
. {5}
4 8 9 10 | 11 | 12 {6}
{10}
13| 14 | 15 16 | 17 | 18 1117}
19 | 20 | 21 | 22 23 | 24 {12}
{14,20,26,27}
25126 27128 |29 30 {15,16,21}

31 |32 33 34 35 36 ENd

[22,23,24,29,30,32
33,34,35,36) 26

Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4} Find(14) = 20 %

{g} - {5}

%ﬂ)} Union(7,20) E%}

0z 7

12 12

s G182

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36)

33,34,35,36}
27

Pick (19,20) S
{1,2,7,8,9,13,19
14,20,26,27}
Start 1 2 | 3| 4| 5| 6 {3}
{4}
4 8 9 10 | 11 | 12 {5}
{6}
13 | 14 | 15 16 | 17 | 18 10}
19 | 20 | 21 | 22 23| 24 {11,17}
{12}
25 | 26 27| 28|29 30 {15,16,21}
3132 33 34 35 36 End

[22,23,24,29,39,32
33,34,35,36) 28

Example at the End

Start 1 2 ‘ 3

5
13

19

25

8
14
20
26

9

10

15
21

16

11

17

22

27

28

31

32

33

34

23
29

35 36 ENnd

12
18
24
30

S
{1,2,3,4,5,6,7,... 36}

—— Remaining
walls in W
—— Previously added
to Maze

29

Data structure for disjoint sets?

 Represent. {3,5,7}, {4,2,8}, {9}, {1,6}
« Support: find(x), union(x,y)

30

Union/Find Trade-off

e Known result:

— Find and Union cannot both be done In worst-
case O(1) time with any data structure.

* We will instead aim for good amortized
complexity.

* For m operations on n elements:
— Target complexity: O(m) I.e. O(1) amortized

31

Tree-based Approach

Each set Is a tree
* Root of each tree Is the set name.

 Allow large fanout (why?)

32

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward
from any given node to find the root.

Idea: reverse the pointers (make them point up from
child to parent). The result is an up-tree.

Initial state @ @ @ @ @ @ @
ISr:;(i(remediate @% @ /(R
(2 5 @

Roots are the names of each set. @ 33

Find Operation

Find(x) follow x to the root and return the root.
@ 3
\ 2
(2 /@ (4
(&

34

Union Operation
Union(i, J) - assuming | and | roots, point i to |.
@ 3®
\ 2
2 /@ (4)
(&

35

Simple Implementation

» Array of indices

12 3 45 67 up[x] = -1 means
up X IS a root.

1A
&

36

Implementation

void Union(int x, int y) { int Find(int x) {
assert (up[x]<0 && upl[y]l<0); while (up[x] >= 0)
up[x] = y; X = upl[x];

} }

return x;

runtime for Union: runtime for Find:

Amortized complexity is no better. >

A Bad Case

© @ 6 - W

6 /@ e ® Unici)n(2,3)

@))
6' /,® Union(n-1,n)

ﬁ

) Find(1) n steps!!

5

Union(1,2)

38

39

Two Big Improvements

Can we do better? Yes!

1. Union-by-size
* |mprove Union so that Find only takes worst
case time of ©(log n).

2. Path compression

* |mprove Find so that, with Union-by-size,
Find takes amortized time of almost ©(1).

40

Union-by-Size

Union-by-size
— Always point the smaller tree to the root of the

larger tree
S-Union(7,1)
@ ©F ‘
\ a
(2 5 @

.

41

Example Again

@@ @ ® - @
S-Union(1,2)

@ ® " W
6’ S-Union(2,3)

o

7 _
S-Union(n-1,n)
6@% Find(1) constanttime

42

Analysis of Union-by-Size

« Theorem: With union-by-size an up-tree of height h has size
at least 2",

* Proof by induction
— Base case: h = 0. The up-tree has one node, 2° =1
— Inductive hypothesis: Assume true for h-1

— Observation: tree gets taller only as a result of a union.

T =S-Union(T4,T>,)

1

43

Analysis of Union-by-Size

* What Is worst case complexity of Find(x) In
an up-tree forest of n nodes?

* (Amortized complexity is no better.)

a4

Worst Case for Union-by-Size

n/2 Unions-by-size

9D ID S S S g g

n/4 Unions-by-size

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Unions-by-size
o i o i\p log,n
*: !
" Find

If there are n = 2K nodes then the longest
path from leaf to root has length k.

46

Array Implementation
2 1

@
(®

Can store separate size array:

1 2 345 6 7
up [-1/1|-1/7|7|5]-1
size | 2 1 4

@ 3) ’
\ /@/@@

a7

Elegant Array Implementation
2 1

L@ 4
e g
(®

Better, store sizes in the up array:

1 23456 7
up [-2]1]-1]7]7]5]-4

Negative up-values correspond to sizes of roots. .

Code for Union-by-Size

S-Union (i, Jj) {
// Collect sizes
si = -upl[i];
sj = -upl[]l’

// verify i and j are roots
assert(si >=0 && sj >=0)

// point smaller sized tree to
// root of larger, update size
if (si < sj) {

up[i] = J;

up[j] = -(si + sj);
else {

up[]] = 1;

up[1] -(si + s3);

}

Path Compression

« To improve the amortized complexity, we'll borrow an idea
from splay trees:

— When going up the tree, improve nodes on the path!

* On a Find operation point all the nodes on the search path
directly to the root. This is called “path compression.”

(D D 7
}@ @/@&@ PC-Find(3) }@ é)@

e e

> 50

Self-Adjustment Works

=
VIV IV VNN

PC-Find(x)

24444444

QALY

Draw the result of FInd(5):

52

Code for Path Compression Find

PC-Find (i) {
//£find root
J = 1;
while (up[j] >= 0) {
J = upl]jl;
root = j;

//compress path
if (1 '= root) {
parent = upl[i];
while (parent != root) {
up[i] = root;
i = parent;
parent = up[parent];
}
}

return (root)

}

53

Complexity of
Union-by-Size + Path Compression

« Worst case time complexity for...
— ...a single Union-by-size is:
— ...a single PC-Find is:

* Time complexity for m > n operations on n
elements has been shown to be O(m log* n).

[See Welss for proof.]
— Amortized complexity is then O(log* n)
— What is log* ?

54

log* n

log* n = number of times you need to apply
log to bring value down to at most 1

og*¥2=1

0g* 4 = log* 22 =2

og* 16 = log* 22° = 3 (log log log 16 = 1)

0g* 65536 = log* 22> = 4 (log log log log 65536 = 1)
0g* 209936 = ... ~ log* (2 x 101°728) =5

log * n <5 for all reasonable n.

55

The Tight Bound

In fact, Tarjan showed the time complexity for
m > n operations on n elements Is:

O(m o(m, n))
Amortized complexity is then ®(a(m, n)) .
What is a(m, n)?
— Inverse of Ackermann’s function.

— For reasonable values of m, n, grows
even slower than log * n. So, it's even
“more constant.”

Proof is beyond scope of this class. A simple
algorithm can lead to incredibly hardcore
analysis!

56

