CSE 332: Data Structures Disjoint Set Union/Find

Richard Anderson Spring 2016

Announcements

Reading for this lecture: Chapter 8.

Dijkstra's Algorithm

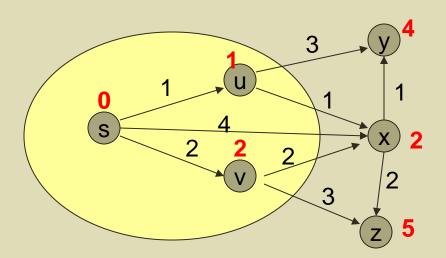
```
S = \{\}; d[s] = 0; d[v] = infinity for <math>v != s While S != V
```

Choose v in V-S with minimum d[v]

Add v to S

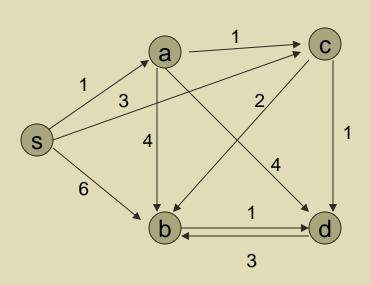
For each win the neighborhood of v

$$d[w] = \min(d[w], d[v] + c(v, w))$$



Assume all edges have non-negative cost

Simulate Dijkstra's algorithm (starting from s) on the graph

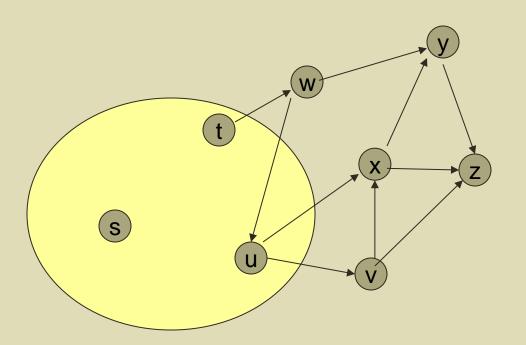


F	Round	Vertex Added	s	а	b	С	d
	1						
	2						
	3						
	4						
	5						

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Why do we worry about negative cost edges??



Graph Algorithms / Data Structures

- Dijkstra's Algorithm for Shortest Paths
 - Heaps, O(m log n) runtime
- Kruskal's Algorithm for Minimum Spanning Tree
 - Union-Find data structure

Making Connections

You have a set of nodes (numbered 1-9) on a network. You are given a sequence of pairwise connections between them:

3-5

4-2

1-6

5-7

4-8

3-7

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to indirect connections?

Q: How many sub-networks do you have?

Making Connections

Answering these questions is much easier if we create disjoint sets of nodes that are connected:

```
Start: {1} {2} {3} {4} {5} {6} {7} {8} {9} 3-5 4-2 1-6 5-7 4-8 3-7
```

Q: Are nodes 2 and 4 (indirectly) connected?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections redundant due to indirect connections?

Q: How many sub-networks do you have?

Applications of Disjoint Sets

Maintaining disjoint sets in this manner arises in a number of areas, including:

- Networks
- -Transistor interconnects
- -Compilers
- Image segmentation
- -Building mazes (this lecture)
- -Graph problems
 - Minimum Spanning Trees (upcoming topic in this class)

Disjoint Set ADT

- Data: set of pairwise disjoint sets.
- Required operations
 - Union merge two sets to create their union
 - Find determine which set an item appears in
- A common operation sequence:
 - Connect two elements if not already connected: if (Find(x) != Find(y)) then Union(x,y)

Disjoint Sets and Naming

- Maintain a set of pairwise disjoint sets.
 - $-\{3,5,7\}$, $\{4,2,8\}$, $\{9\}$, $\{1,6\}$
- Each set has a unique name: one of its members (for convenience)
 - $-\{3,\underline{5},7\}$, $\{4,2,\underline{8}\}$, $\{\underline{9}\}$, $\{\underline{1},6\}$

Union

 Union(x,y) – take the union of two sets named x and y

```
-\{3,\underline{5},7\}, \{4,2,\underline{8}\}, \{\underline{9}\}, \{\underline{1},6\}
```

```
- Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},
```

Find

 Find(x) – return the name of the set containing x.

```
-\{3,\underline{5},7,1,6\},\{4,2,\underline{8}\},\{\underline{9}\},
```

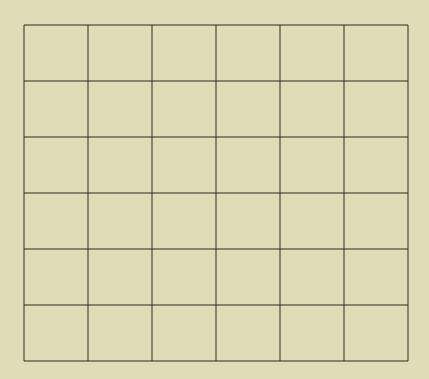
- Find(1) = 5
- Find(4) = 8

Example

```
S
                                                         S
{1,2,<del>7</del>,8,9,13,19}
                                                         {1,2,<del>7</del>,8,9,13,19,14,20 26,27}
                                Find(8) = 7
{<u>3</u>}
                                                         {<u>3</u>}
4
                                Find(14) = 20
                                                         4
{<u>5</u>}
                                                         {<u>5</u>}
{<u>6</u>}
                                                         {<u>6</u>}
                                 Union(7,20)
10
                                                         {<u>10</u>}
{11, <u>17</u>}
                                                         {11, <u>17</u>}
12
                                                         <u>{12</u>}
\{14, 20, 26, 27\}
                                                         {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                                         {22,23,24,29,39,32
{22,23,24,29,39,32
                                                           33,34,35,36}
 33,34,35,36}
```

Nifty Application: Building Mazes

Idea: Build a random maze by erasing walls.



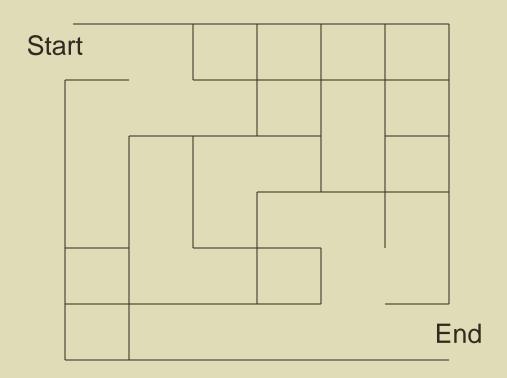
Building Mazes

Pick Start and End

Start							
							ind
							iiu

Building Mazes

Repeatedly pick random walls to delete.



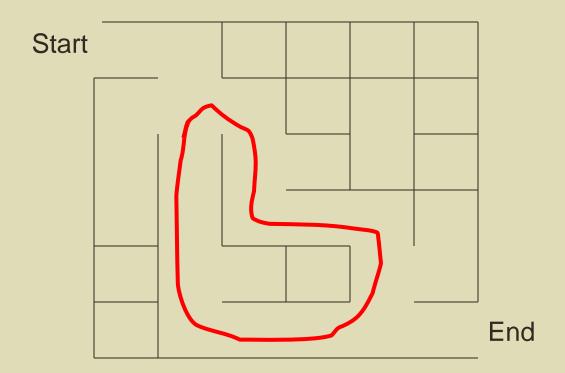
Desired Properties

 None of the boundary is deleted (except at "start" and "end").

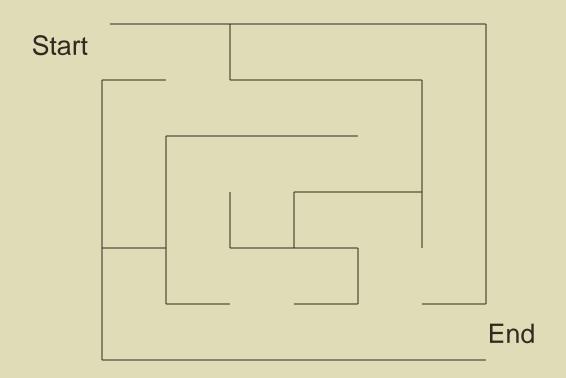
Every cell is reachable from every other cell.

 There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.

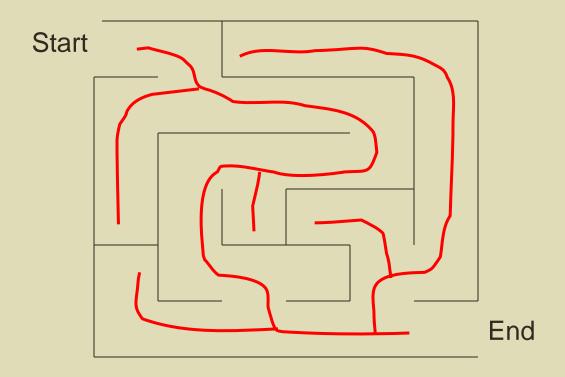
A Cycle



A Good Solution



A Hidden Tree



Number the Cells

We start with disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\},..., \{36\} \} \}$. We have all possible walls between neighbors $W = \{ (1,2), (1,7), (2,8), (2,3), ... \}$ 60 walls total.

Sta	rt
Olo	וונ

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

End

Idea: Union-find operations will be done on cells.

Maze Building with Disjoint Union/Find

Algorithm sketch:

- 1. Choose wall at random.
 - → Boundary walls are not in wall list, so left alone
- 2. Erase wall if the neighbors are in disjoint sets.
 - → Avoids cycles
- 3. Take union of those sets.
- 4. Go to 1, iterate until there is only one set.
 - → Every cell reachable from every other cell.

Pseudocode

- S = set of sets of connected cells
 - Initialize to {{1}, {2}, ..., {n}}
- W = set of walls
 - Initialize to set of all walls {{1,2},{1,7}, ...}
- Maze = set of walls in maze (initially empty)

```
While there is more than one set in S

Pick a random non-boundary wall (x,y) and remove from W

u = Find(x);
v = Find(y);
if u ≠ v then
Union(u,v)
else
Add wall (x,y) to Maze

Add remaining members of W to Maze
```

Example Step

	PICK	(0, 12	+)				
Start	1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

Dick (8 11)

```
S
{1,2,<u>7</u>,8,9,13,19}
{<u>3</u>}
\{\underline{4}\}
{<u>5</u>}
{<u>6</u>}
10
{11, <u>17</u>}
12
{14,<u>20</u>,26,27}
{15,<u>16</u>,21}
{22,23,24,29,30,32
```

33,34,35,36}

Example

```
S
                                                         S
{1,2,<del>7</del>,8,9,13,19}
                                                         {1,2,<del>7</del>,8,9,13,19,14,20 26,27}
{<u>3</u>}
                                Find(8) = 7
                                                         {<u>3</u>}
4
                                Find(14) = 20
                                                         4
{<u>5</u>}
                                                         {<u>5</u>}
{<u>6</u>}
                                                         {<u>6</u>}
                                 Union(7,20)
10
                                                         {<u>10</u>}
{11, <u>17</u>}
                                                         {11, <u>17</u>}
12
                                                         <u>{12</u>}
\{14, 20, 26, 27\}
                                                         {15,<u>16</u>,21}
{15,<u>16</u>,21}
                                                         {22,23,24,29,39,32
{22,23,24,29,39,32
                                                           33,34,35,36}
 33,34,35,36}
```

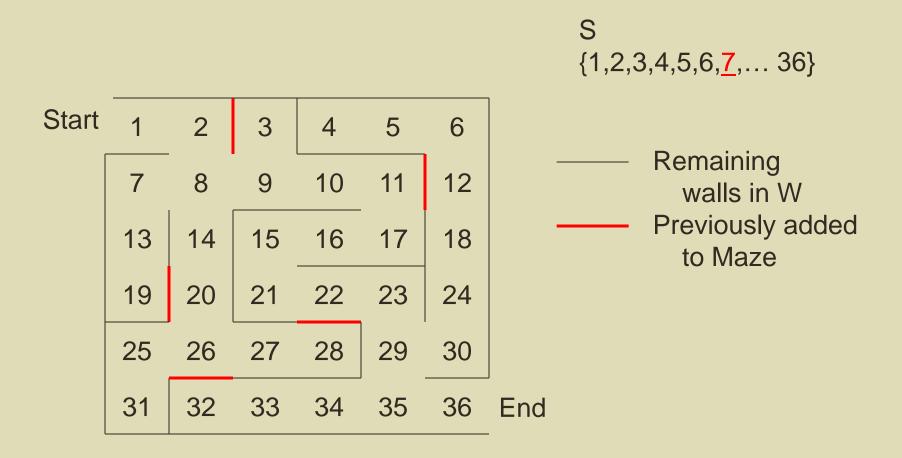
Example

	Pick (19,20)								
Start	1	2	3	4	5	6			
	7	8	9	10	11	12			
	13	14	15	16	17	18			
	19	20	21	22	23	24			
	25	26	27	28	29	30			
	31	32	33	34	35	36	End		

```
S
{1,2,<mark>7</mark>,8,9,13,19
     14,20,26,27}
{<u>3</u>}
{<u>4</u>}
{<u>5</u>}
{<u>6</u>}
{<u>10</u>}
{11, <u>17</u>}
<u>{12</u>}
{15,<u>16</u>,21}
{22,23,24,29,39,32
```

33,34,35,36}

Example at the End



Data structure for disjoint sets?

- Represent: $\{3, 5, 7\}$, $\{4, 2, 8\}$, $\{9\}$, $\{1, 6\}$
- Support: find(x), union(x,y)

Union/Find Trade-off

- Known result:
 - Find and Union cannot both be done in worstcase O(1) time with any data structure.
- We will instead aim for good amortized complexity.
- For m operations on n elements:
 - Target complexity: O(m) i.e. O(1) amortized

Tree-based Approach

Each set is a tree

Root of each tree is the set name.

Allow large fanout (why?)

Up-Tree for DS Union/Find

Observation: we will only traverse these trees upward from any given node to find the root.

Idea: reverse the pointers (make them point up from child to parent). The result is an up-tree.

Initial state

2

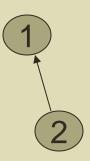
4

5

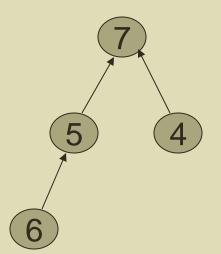
6

7

Intermediate state



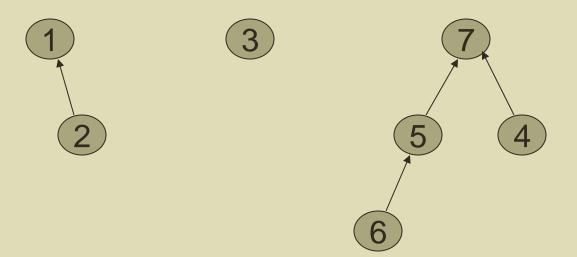
(3)



Roots are the names of each set.

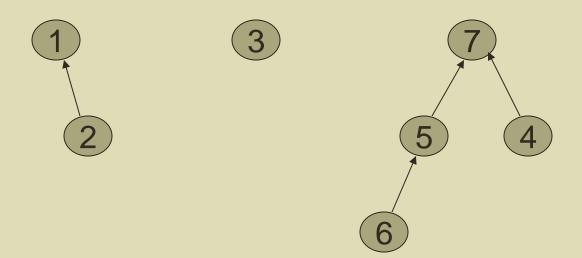
Find Operation

Find(x) follow x to the root and return the root.



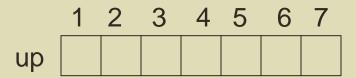
Union Operation

Union(i, j) - assuming i and j roots, point i to j.

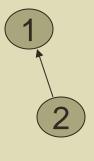


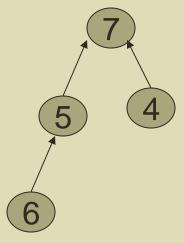
Simple Implementation

Array of indices



up[x] = -1 meansx is a root.





Implementation

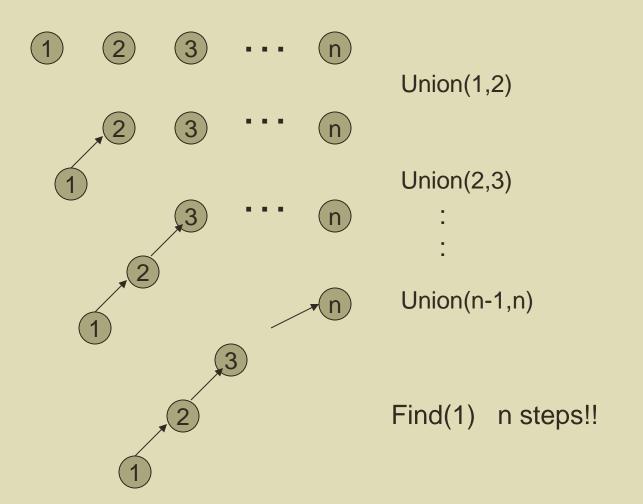
```
void Union(int x, int y) {
  assert(up[x]<0 && up[y]<0);
  up[x] = y;
}</pre>
```

```
int Find(int x) {
    while(up[x] >= 0) {
        x = up[x];
    }
    return x;
}
```

runtime for Union:

runtime for Find:

A Bad Case



Two Big Improvements

Can we do better? Yes!

1. Union-by-size

 Improve Union so that Find only takes worst case time of Θ(log n).

2. Path compression

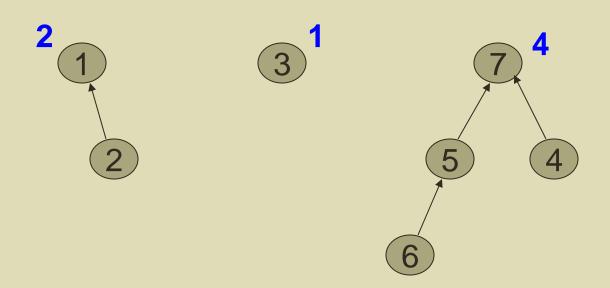
Improve Find so that, with Union-by-size,
 Find takes amortized time of <u>almost</u> Θ(1).

Union-by-Size

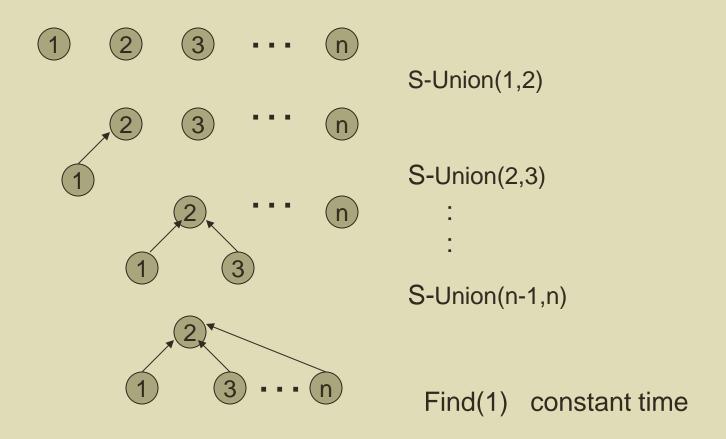
Union-by-size

 Always point the smaller tree to the root of the larger tree

S-Union(7,1)

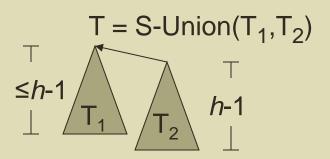


Example Again



Analysis of Union-by-Size

- Theorem: With union-by-size an up-tree of height h has size at least 2h.
- Proof by induction
 - Base case: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive hypothesis: Assume true for h-1
 - Observation: tree gets taller only as a result of a union.



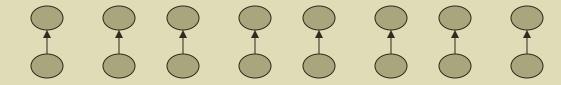
Analysis of Union-by-Size

 What is worst case complexity of Find(x) in an up-tree forest of n nodes?

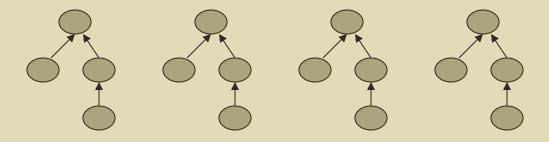
(Amortized complexity is no better.)

Worst Case for Union-by-Size

n/2 Unions-by-size

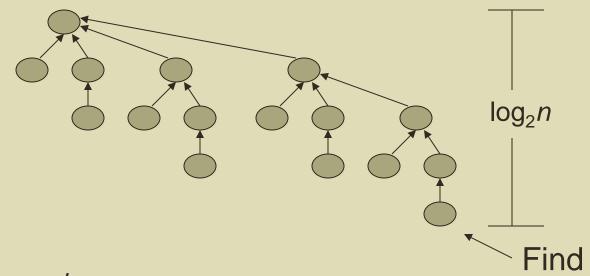


n/4 Unions-by-size



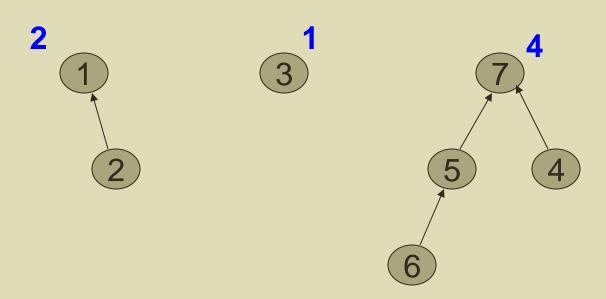
Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Unions-by-size



If there are $n = 2^k$ nodes then the longest path from leaf to root has length k.

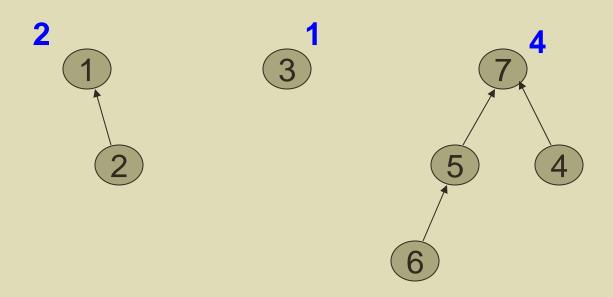
Array Implementation



Can store separate size array:

	1	2	3	4	5	6	7
up	-1	1	-1	7	7	5	-1
size	2		1				4

Elegant Array Implementation



Better, store sizes in the up array:

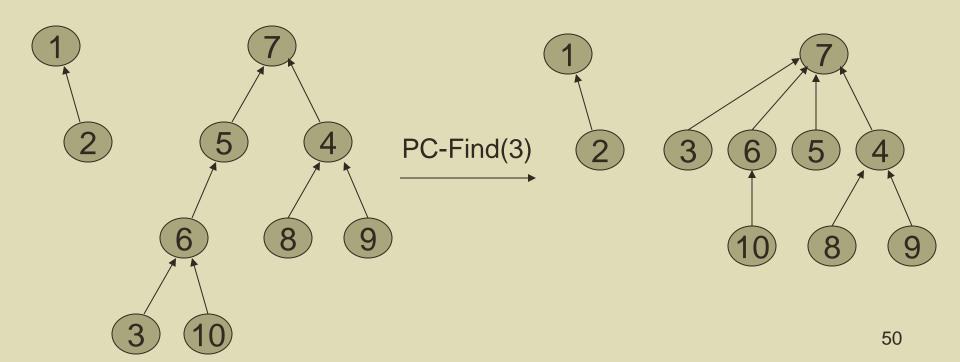
Negative up-values correspond to sizes of roots.

Code for Union-by-Size

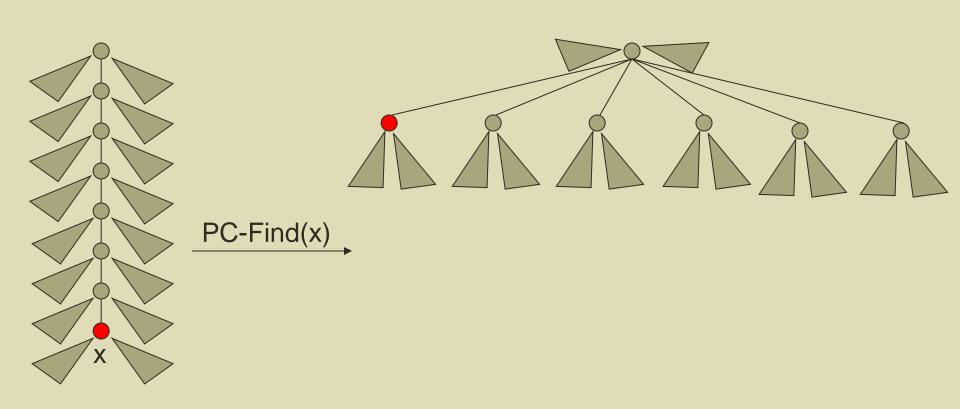
```
S-Union(i,j){
  // Collect sizes
  si = -up[i];
  sj = -up[j];
  // verify i and j are roots
  assert(si >=0 && sj >=0)
  // point smaller sized tree to
  // root of larger, update size
  if (si < sj) {
   up[i] = j;
   up[j] = -(si + sj);
  else {
   up[j] = i;
   up[i] = -(si + sj);
```

Path Compression

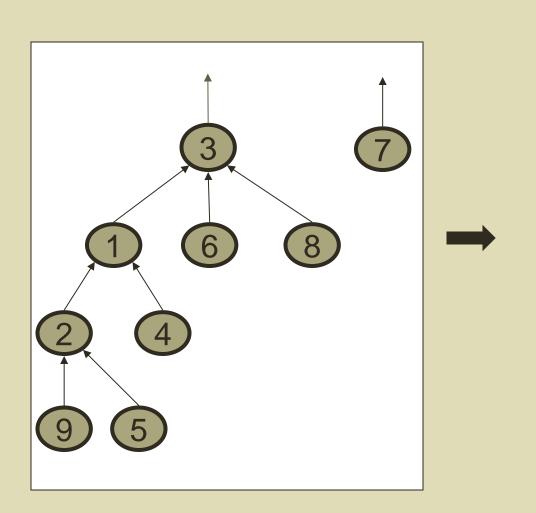
- To improve the amortized complexity, we'll borrow an idea from splay trees:
 - When going up the tree, improve nodes on the path!
- On a Find operation point all the nodes on the search path directly to the root. This is called "path compression."



Self-Adjustment Works



Draw the result of Find(5):



Code for Path Compression Find

```
PC-Find(i) {
  //find root
  j = i;
 while (up[j] >= 0) {
    j = up[j];
  root = j;
  //compress path
  if (i != root) {
    parent = up[i];
    while (parent != root) {
      up[i] = root;
      i = parent;
      parent = up[parent];
  return (root)
```

Complexity of Union-by-Size + Path Compression

- Worst case time complexity for...
 - …a single Union-by-size is:
 - …a single PC-Find is:
- Time complexity for m ≥ n operations on n elements has been shown to be O(m log* n).
 - [See Weiss for proof.]
 - Amortized complexity is then O(log* n)
 - What is log*?

log* n

log* *n* = number of times you need to apply log to bring value down to at most 1

$$\log^* 2 = 1$$

 $\log^* 4 = \log^* 2^2 = 2$
 $\log^* 16 = \log^* 2^{2^2} = 3$ (log log log 16 = 1)
 $\log^* 65536 = \log^* 2^{2^{2^2}} = 4$ (log log log 65536 = 1)
 $\log^* 2^{65536} = \dots \approx \log^* (2 \times 10^{19,728}) = 5$

 $\log * n \le 5$ for all reasonable n.

The Tight Bound

In fact, Tarjan showed the time complexity for $m \ge n$ operations on n elements is:

$$\Theta(m \alpha(m, n))$$

Amortized complexity is then $\Theta(\alpha(m, n))$.

What is $\alpha(m, n)$?

- Inverse of Ackermann's function.
- For reasonable values of *m*, *n*, grows even slower than log * *n*. So, it's even "more constant."

Proof is beyond scope of this class. A simple algorithm can lead to incredibly hardcore analysis!