

Announcements

Paths and connectivity

Graphs

-A formalism for representing relationships between objects
-Graph G = (V, E)
-Set of vertices:
$\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
-Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each $\mathbf{e}_{\mathbf{i}}$ connects one
 (More on this later...)

$$
\mathrm{V}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}
$$

$$
\mathrm{E}=\{(\mathrm{C}, \mathrm{~B})
$$

$$
(A, B)
$$

- vertex to another ($\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}$)

$$
(\mathrm{B}, \mathrm{~A}) \text {, }
$$

$$
(C, D)\}
$$

-For directed edges, ($\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}$) and ($\mathbf{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{j}}$) are distinct.

The Shortest Path Problem

Given a graph G, and vertices s and t in G, find the shortest path from s to t.

Two cases: weighted and unweighted.
For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k$
(a.k.a. length)
- weighted length of path $p=\sum_{i=0 . . k-1} c_{i, i+1} \quad$ (a.k.a. cost)

Single Source Shortest Paths (SSSP)

Given a graph G and vertex s, find the shortest paths from s to all vertices in G.

- How much harder is this than finding single shortest path from s to t ?


```
void Graph::unweighted (Vertex s){
    Queue q(NUM VERTICES);
    Vertex v, w;
    q.enqueue(s);
    s.dist = 0;
    while (!q.isEmpty()){
        v = q.dequeue();
            for each w adjacent to v at most once - if adjacency
            if (w.dist == INFINITY) { lists are used
                w.dist = v.dist + 1;
                    w.prev = v;
                    q. enqueue (w);
                            each vertex enqueued
                        at most once
```

each edge examined

```
            }
        }
    }
                total running time: O(
                    )


Can we calculate shortest distance to all vertices from Allen Center?


\section*{Dijkstra's Algorithm: Idea}

At each step:
1) Pick closest unknown vertex
2) Add it to known vertices
3) Update distances

\section*{Dijkstra's Algorithm: Pseudocode}

Initialize the cost of each node to \(\infty\)
Initialize the cost of the source to 0

While there are unknown vertices left in the graph
Select an unknown vertex a with the lowest cost
Mark a as known
For each vertex \(\boldsymbol{b}\) adjacent to \(\boldsymbol{a}\)
newcost \(=\operatorname{cost}(\mathbf{a})+\operatorname{cost}(\mathbf{a}, \mathbf{b})\)
if (newcost < cost(b))
\(\operatorname{cost}(\mathbf{b})=\) newcost previous(b) \(=\mathbf{a}\)

\section*{Important Features}
- Once a vertex is known, the cost of the shortest path to that vertex is known
- While a vertex is still unknown, another shorter path to it might still be found
- The shortest path can found by following the previous pointers stored at each vertex


\section*{Dijkstra's Alg: Implementation}

Initialize the cost of each vertex to \(\infty\)
Initialize the cost of the source to 0
While there are unknown vertices left in the graph
Select the unknown vertex \(\boldsymbol{a}\) with the lowest cost
Mark a as known
For each vertex \(\boldsymbol{b}\) adjacent to \(\boldsymbol{a}\)
newcost \(=\min (\operatorname{cost}(\boldsymbol{b}), \operatorname{cost}(\boldsymbol{a})+\operatorname{cost}(\boldsymbol{a}, \boldsymbol{b}))\)
if newcost < cost(b)
\(\operatorname{cost}(\boldsymbol{b})=\) newcost
previous \((\boldsymbol{b})=a\)
What data structures should we use?

Running time?

\section*{Dijkstra's Algorithm: Summary}
- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
-Why does it work?

\section*{Correctness: The Cloud Proof}


How does Dijkstra's decide which vertex to add to the Known set next?
- If path to V is shortest, path to W must be at least as long
(or else we would have picked w as the next vertex)
- So the path through \(\mathbf{W}\) to V cannot be any shorter!

\section*{Correctness: Inside the Cloud}

Prove by induction on \# of nodes in the cloud: Initial cloud is just the source with shortest path 0 Assume: Everything inside the cloud has the correct shortest path
Inductive step: by argument on previous slide, we can safely add min-cost vertex to cloud

When does Dijkstra's algorithm not work?

\section*{Negative Weights?}


How does Dijkstra's decide which vertex to add to the Known set next?
- If path to V is shortest, path to W must be at least as long
(or else we would have picked w as the next vertex)
- So the path through W to V cannot be any shorter!

\section*{Dijkstra for BFS}
- You can use Dijkstra's algorithm for BFS
- Is this a good idea?```

