
CSE 322: Shortest Paths

Richard Anderson

Spring 2016

Announcements

•

2

3

Graphs
•A formalism for representing relationships between
objects

–Graph G = (V,E)

–Set of vertices:
V = {v1,v2,…,vn}

–Set of edges:
E = {e1,e2,…,em}

where each ei connects one

– vertex to another (vj,vk)

•For directed edges, (vj,vk) and (vk,vj) are distinct.
(More on this later…)

A

B

C

V = {A, B, C, D}

E = {(C, B),

 (A, B),

 (B, A),

 (C, D)}

D

Paths and connectivity

4

5

The Shortest Path Problem
 Given a graph G, and vertices s and t in G, find

the shortest path from s to t.

Two cases: weighted and unweighted.

For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = i=0..k-1 ci,i+1 (a.k.a. cost)

6

Single Source Shortest Paths (SSSP)

 Given a graph G and vertex s, find the

shortest paths from s to all vertices in G.

– How much harder is this than finding single

shortest path from s to t?

7

Variations of SSSP

– Weighted vs. unweighted

– Directed vs undirected

– Cyclic vs. acyclic

– Positive weights only vs. negative weights

allowed

– Shortest path vs. longest path

– …

8

Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management

(see textbook)

– …

9

SSSP: Unweighted Version

10

void Graph::unweighted (Vertex s){

 Queue q(NUM_VERTICES);

 Vertex v, w;

 q.enqueue(s);

 s.dist = 0;

 while (!q.isEmpty()){

 v = q.dequeue();

 for each w adjacent to v

 if (w.dist == INFINITY){

 w.dist = v.dist + 1;

 w.prev = v;

 q.enqueue(w);

 }

 }

 }

each edge examined

at most once – if adjacency

lists are used

each vertex enqueued

at most once

total running time: O()

11

v3

v6

v1

v2 v4

v5

v0
s

V Dist prev

v0

v1

v2

v3

v4

v5

v6

12

Weighted SSSP:
All edges are not created equal

Vending Machine in EE1

ALLEN
HUB

Delfino’s

Ben & Jerry’s

Neelam’s
Cedars

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

10 The Ave

U Village

350

375

40

25

35
15

25

15,356

35

285
75

70
365

350

Can we calculate shortest distance to all vertices from Allen Center?

13

Dijkstra’s Algorithm: Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:
– Known

• shortest distance
is already known

– Unknown

• Have tentative
distance

14

Dijkstra’s Algorithm: Idea

At each step:

1) Pick closest unknown

vertex

2) Add it to known

vertices

3) Update distances

15

Dijkstra’s Algorithm: Pseudocode

Initialize the cost of each node to

Initialize the cost of the source to 0

While there are unknown vertices left in the graph
Select an unknown vertex a with the lowest cost

Mark a as known

For each vertex b adjacent to a

 newcost = cost(a) + cost(a,b)

 if (newcost < cost(b))

 cost(b) = newcost

 previous(b) = a

16

Important Features

• Once a vertex is known, the cost of the shortest

path to that vertex is known

• While a vertex is still unknown, another shorter

path to it might still be found

• The shortest path can found by following the

previous pointers stored at each vertex

17

v3

v6

v1

v2
v4

v5

v0
s

1

2

2

2

1

1 1

5 3

5

6

10

V Known? Cost Previous

v0

v1

v2

v3

v4

v5

v6

18

Dijkstra’s Alg: Implementation
Initialize the cost of each vertex to

Initialize the cost of the source to 0

While there are unknown vertices left in the graph
Select the unknown vertex a with the lowest cost

Mark a as known

For each vertex b adjacent to a

 newcost = min(cost(b), cost(a) + cost(a, b))

 if newcost < cost(b)

 cost(b) = newcost

 previous(b) = a

What data structures should we use?

Running time?

19

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted

graphs without negative weights

• A greedy algorithm (irrevocably makes decisions

without considering future consequences)

• Why does it work?

20

The Known
Cloud

V

Next shortest path from

inside the known cloud

W

Better path

to V? No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?

• If path to V is shortest, path to W must be at least as long

 (or else we would have picked W as the next vertex)

• So the path through W to V cannot be any shorter!

Source

21

Correctness: Inside the Cloud

Prove by induction on # of nodes in the cloud:

Initial cloud is just the source with shortest path 0

Assume: Everything inside the cloud has the

correct shortest path

Inductive step: by argument on previous slide, we

can safely add min-cost vertex to cloud

When does Dijkstra’s algorithm not work?

22

The Known
Cloud

V

Next shortest path from

inside the known cloud

W

Better path

to V?

Negative Weights?

How does Dijkstra’s decide which vertex to add to the Known set next?

• If path to V is shortest, path to W must be at least as long

 (or else we would have picked W as the next vertex)

• So the path through W to V cannot be any shorter!

Source

Dijkstra for BFS

• You can use Dijkstra’s algorithm for BFS

• Is this a good idea?

