
5/21/2016

1

1

CSE 332: Graphs II

Paul Beame in lieu of Richard Anderson

Spring 2016

2

Trees as Graphs

A tree is a graph that is:

– undirected

– acyclic

– connected

Hey, that doesn’t look like a tree!

A

B

D E

C

F

H G

3

Rooted Trees
We are more accustomed to:

•Rooted trees (a tree node that is “special”)

•Directed edges from parents to children (parent closer to root).

A

B

D E

C

F

H G

A

B

D E

C

F

H G

A

B

D E

C

F

H G

A rooted tree (root indicated in red)

 drawn two ways

Rooted tree with directed

edges from parents to children.

Characteristics of this one?

4

Directed Acyclic Graphs (DAGs)

DAGs are directed

graphs with no

(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-

graph is a DAG, then all

procedure calls can be in-

lined

5

|E| and |V|
How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?

– Arbitrary graph: O(|E| + |V|)

– Arbitrary graph: O(|E| + |V|2)

– Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:

– A graph is sparse if it has O(|V|) edges (upper bound).

– A graph is dense if it has (|V|2) edges. 6

What’s the data structure?

• Common query: which edges are adjacent to a vertex

5/21/2016

2

7

Representation 2: Adjacency List

A list (array) of length |V| in which each entry stores a list

(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge?

A

B

C

D
A

B

C

D

8

Representation 1: Adjacency Matrix

A |V|⨯|V| matrix M in which an element M[u,v] is true if

and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge?

A

B

C

D

A B C

A

B

C

D

D

9

Representing Undirected Graphs

What do these reps look like for an undirected graph?

A B C

A

B

C

D

D

A

B

C

D

A

B

C

D

Adjacency matrix:

Adjacency list:

10

Some Applications:

Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to

1st and University using Metro?

How about 4th and Seneca?

11

Application: Topological Sort
Given a graph, G = (V,E), output all the vertices in V

sorted so that no vertex is output before any other vertex

with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457

What kind of input

graph is allowed? 12

Topological Sort: Take One

1. Label each vertex with its in-degree (# inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:

5/21/2016

3

13

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

CSE 303 CSE 457

142

143

321

341

378

370

322

326

303

403

421

451

457

467
14

void Graph::topsort(){

 Vertex v, w;

labelEachVertexWithItsInDegree();

 for (int counter=0; counter < NUM_VERTICES;

 counter++){

 v = findNewVertexOfDegreeZero();

 v.topologicalNum = counter;

 for each w adjacent to v

 w.indegree--;

 }

}

15

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices

3. While Q not empty
a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,

 box, … instead of a queue

16

void Graph::topsort(){

 Queue q(NUM_VERTICES);

 int counter = 0;

 Vertex v, w;

 labelEachVertexWithItsIn-degree();

 q.makeEmpty();

 for each vertex v

 if (v.indegree == 0)

 q.enqueue(v);

 while (!q.isEmpty()){

 v = q.dequeue();

 v.topologicalNum = ++counter;

 for each w adjacent to v

 if (--w.indegree == 0)

 q.enqueue(w);

 }

}

intialize the

queue

get a vertex with

indegree 0

insert new

eligible

vertices

Find a topological order for the

following graph

E

F

D

A

C

B
K

J
G

H
I

L

If a graph has a cycle, there is no

topological sort

Consider the first vertex

on the cycle in the

topological sort

It must have an

incoming edge B

A

D

E

F

C

5/21/2016

4

Lemma: If a graph is acyclic, it has

a vertex with in degree 0

Proof:

Pick a vertex v1, if it has in-degree 0 then done

If not, let (v2, v1) be an edge, if v2 has in-degree 0 then

done

If not, let (v3, v2) be an edge . . .

If this process continues for more than n steps, we have a

repeated vertex, so we have a cycle

