

|E| and |V|

How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?

- Arbitrary graph: O(|E| + |V|)
- Arbitrary graph: O(|E| + |V|²)
- Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:

- A graph is *sparse* if it has O(|V|) edges (upper bound).

– A graph is *dense* if it has $\Theta(|V|^2)$ edges.

Lemma: If a graph is acyclic, it has a vertex with in degree 0

Proof:

Pick a vertex v_1 , if it has in-degree 0 then done If not, let (v_2, v_1) be an edge, if v_2 has in-degree 0 then done

If not, let (v_3,v_2) be an edge . . . If this process continues for more than n steps, we have a repeated vertex, so we have a cycle