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Trees as Graphs 

A tree is a graph that is: 

–  undirected 

–  acyclic 

–  connected 

 

 

 

Hey, that doesn’t look like a tree! 
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Rooted Trees 
We are more accustomed to: 

•Rooted trees (a tree node that is “special”) 

•Directed edges from parents to children (parent closer to root). 
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A rooted tree (root indicated in red)  

                              drawn two ways 

Rooted tree with directed  

edges from parents to children. 

Characteristics of this one? 
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Directed Acyclic Graphs (DAGs) 

DAGs are directed 

graphs with no 

(directed) cycles. 

main() 

add() 

access() 

mult() 

read() 

Aside: If program call-

graph is a DAG, then all 

procedure calls can be in-

lined 
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|E| and |V| 
How many edges |E| in a graph with |V| vertices? 

 

What if the graph is directed? 

 

What if it is undirected and connected? 

 

Can the following bounds be simplified? 

– Arbitrary graph: O(|E| + |V|) 

– Arbitrary graph: O(|E| + |V|2) 

– Undirected, connected: O(|E| log|V| + |V| log|V|) 

 

Some (semi-standard) terminology: 

– A graph is sparse if it has O(|V|) edges (upper bound). 

– A graph is dense if it has (|V|2) edges. 6 

What’s the data structure? 

• Common query:  which edges are adjacent to a vertex 
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Representation 2: Adjacency List 

A list (array) of length |V| in which each entry stores a list 

(linked list) of all adjacent vertices 

Space requirements? 

Best for what kinds of graphs? 

Runtimes: 

Iterate over vertices? 

Iterate over edges? 

Iterate edges adj. to vertex? 

Existence of edge? 
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Representation 1: Adjacency Matrix 

A |V|⨯|V| matrix M in which an element M[u,v] is true if 

and only if there is an edge from u to v 

Space requirements? 

Best for what kinds of graphs? 

Runtimes: 

Iterate over vertices? 

Iterate over edges? 

Iterate edges adj. to vertex? 

Existence of edge? 
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Representing Undirected Graphs 

What do these reps look like for an undirected graph? 
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Adjacency matrix: 

Adjacency list: 
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Some Applications: 

Bus Routes in Downtown Seattle 

If we’re at 3rd and Pine, how can we get to 

1st and University using Metro?   

How about 4th and Seneca? 
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Application: Topological Sort 
Given a graph, G = (V,E), output all the vertices in V 

sorted so that no vertex is output before any other vertex 

with an edge to it. 

CSE 142 CSE 143 

CSE 321 

CSE 341 

CSE 378 

CSE 326 

CSE 370 

CSE 403 

CSE 421 

CSE 467 

CSE 451 

CSE 322 

Is the output unique? 

CSE 303 CSE 457 

What kind of input 

graph is allowed? 12 

Topological Sort: Take One 

1. Label each vertex with its in-degree (# inbound edges) 

2. While there are vertices remaining: 

a. Choose a vertex v of in-degree zero; output v 

b. Reduce the in-degree of all vertices adjacent to v 

c. Remove v from the list of vertices 

Runtime: 
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void Graph::topsort(){ 

  Vertex v, w; 

   

labelEachVertexWithItsInDegree(); 

  

 for (int counter=0; counter < NUM_VERTICES;  

      counter++){ 

      v = findNewVertexOfDegreeZero(); 

     

      v.topologicalNum = counter; 

      for each w adjacent to v 

        w.indegree--; 

  } 

} 
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Topological Sort: Take Two 

1. Label each vertex with its in-degree 

2. Initialize a queue Q to contain all in-degree zero 
vertices 

3. While Q not empty 
a. v = Q.dequeue; output v 

b. Reduce the in-degree of all vertices adjacent to v 

c. If new in-degree of any such vertex u is zero 
Q.enqueue(u) 

Runtime: 

Note: could use a stack, list, set, 

          box, … instead of a queue 
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void Graph::topsort(){ 

  Queue q(NUM_VERTICES);   

  int counter = 0;  

  Vertex v, w; 

 labelEachVertexWithItsIn-degree(); 

 

  q.makeEmpty(); 

  for each vertex v 

    if (v.indegree == 0) 

      q.enqueue(v); 

 

  while (!q.isEmpty()){ 

    v = q.dequeue(); 

    v.topologicalNum = ++counter; 

    for each w adjacent to v 

      if (--w.indegree == 0) 

        q.enqueue(w); 

  } 

} 

intialize the 

queue 

get a vertex with 

indegree 0 

insert new 

eligible 

vertices 

Find a topological order for the 

following graph 
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If a graph has a cycle, there is no 

topological sort 

Consider the first vertex 

on the cycle in the 

topological sort 

It must have an 

incoming edge B 
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Lemma: If a graph is acyclic, it has 

a vertex with in degree 0 

Proof:   

Pick a vertex v1, if it has in-degree 0 then done 

If not, let (v2, v1) be an edge, if v2 has in-degree 0 then 

done 

If not, let (v3, v2) be an edge . . . 

If this process continues for more than n steps, we have a 

repeated vertex, so we have a cycle 


