CSE 332: Graphs |

Paul Beame In lieu of Richard Anderson
Spring 2016




Trees as Graphs

A tree Is a graph that is:
— undirected (Bj

— acyclic
— connected

@&

/

Hey, that doesn't look like a tree!



Rooted Trees

We are more accustomed to:
*Rooted trees (a tree node that is “special”)
*Directed edges from parents to children (parent closer to root).

A rooted tree (root indicated in red) Rooted tree with directed
@ @ drawn two ways edges from parents to children.
@ ®

®» ® © ]
@@@@ O ®OF
: ® ®

Characteristics of this one?
3



Directed Acyclic Graphs (DAGS)

DAGs are directed
graphs with no
(directed) cycles.

main ()

mult ()

Aside: If program call- addl)

graph is a DAG, then all

procedure calls can be In-
lined access () read ()



|IE| and |V]

How many edges |E| in a graph with |V| vertices?
What if the graph is directed?
What if it is undirected and connected?

Can the following bounds be simplified?
— Arbitrary graph: O(|E| + [V|)
— Arbitrary graph: O(|E| + [V|?)
— Undirected, connected: O(|E| log|V| + |V]| log|V])

Some (semi-standard) terminology:
— A graph is sparse if it has O(|V|) edges (upper bound).
— A graph is dense if it has ©(|V|?) edges.



What's the data structure?

« Common query. which edges are adjacent to a vertex



Representation 2. Adjacency List

A list (array) of length | V| in which each entry stores a list
(linked list) of all adjacent vertices

D
O A
A
¢ B

Runtimes:
Iterate over vertices?
Iterate over edges? Space requirements?
Iterate edges ad]. to vertex? Best for what kinds of graphs?

Existence of edge? !



Representation 1: Adjacency Matrix

A |V|x|V] matrixMin which an element M[u,v] IS true If
and only if there is an edge fromu to v

A B C D

D
A
. O
B
C
Runtimes: D
Iterate over vertices?
Iterate over edges? Space requirements?
Iterate edges adj. to vertex? Best for what kinds of graphs?

Existence of edge? °



Representing Undirected Graphs

What do these reps look like for an undirected graph?

D
R O
Adjacency matrix: Q\zl
A B C D Adjacency list:
A A

B B




Some Applications:
Bus Routes in Downtown Seattle

4th

2nd

1st D_.."ﬁ:)_A—l_ﬁ—

Y LY
-~

N

'

—

=
) (D

.

uolu
ALISIDAIUN
eETIETS

If we’re at 3@ and Pine, how can we get to
1st and University using Metro?
How about 4" and Seneca?

10



Application: Topological Sort

Given a graph, G = (V,E), output all the vertices in v

sorted so that no vertex is output before any other vertex
with an edge to it.

What kind of input
graph is allowed? Is the output unique? 11



Topological Sort: Take One

1. Label each vertex with its in-degree (# inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

12



142
143
321
341
378
370
322
326

303
403
421
451
457
467



void Graph: :topsort () {
Vertex v, w;

labelEachVertexWithItsInDegree () ;

for (int counter=0; counter < NUM VERTICES;
counter++) {

v = findNewVertexOfDegreeZero() ;

v.topologicalNum = counter;
for each w adjacent to v
w.indegree--;

14



Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices

3. While Q not empty

v = Q.dequeue; output v

Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.engqueue(u)

o o

Note: could use a stack, list, set,
box, ... instead of a queue
Runtime:

15



void Graph: : topsort () {
Queue g (NUM VERTICES) ;
int counter = 0;
Vertex v, w;

labelEachVertexWithItsIn-degree() ;

q.makeEmpty () ;
for each vertex v

intialize the
queue

if (v.indegree == 0)
q.enqueue (V) ;

while ('qg.isEmpty()) {

v = g.dequeue() ;

get a vertex with
indegree 0

v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree ==
gq.enqueue (w) ;

0) insert new
eligible
vertices

16



Find a topological order for the
following graph

R

©
N
\J ¥



If a graph has a cycle, there is no
topological sort

Consider the first vertex

on the cycle in the (A F
topological sort

It must have an

Incoming edge B




Lemma: If a graph is acyclic, it has
a vertex with in degree O

Proof:
Pick a vertex v, If it has in-degree O then done
If not, let (v,, v;) be an edge, If v, has in-degree 0 then
done
If not, let (v,, V,) be an edge . ..
If this process continues for more than n steps, we have a
repeated vertex, so we have a cycle



