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CSE 332: Graphs 

Richard Anderson  

Spring 2016 
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Announcements 

• This week and next week – Graph 

Algorithms 

• Reading,  Monday and Wednesday,  Weiss 

9.1-9.3 

• Guest lecture, Paul Beame 
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Graphs 
•A formalism for representing relationships between 
objects 
 

Graph G = (V,E) 

–Set of vertices: 
V = {v1,v2,…,vn} 

–Set of edges: 
E = {e1,e2,…,em}  

where each ei connects one 

   vertex to another (vj,vk) 

 

For directed edges, (vj,vk) and (vk,vj) are distinct. 
(More on this later…) 
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C 

V = {A, B, C, D} 

E = {(C, B),  

     (A, B),  

     (B, A) 

     (C, D)} 

D 
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Graphs 
 

Notation 

 |V| = number of vertices 

 |E| = number of edges 

 

•v is adjacent to u if (u,v)∈ E 

–neighbor of = adjacent to 

–Order matters for directed edges 

•It is possible to have an edge (v,v),  

    called a loop.   

–We will assume graphs without loops. 

V = {A, B, C, D} 

E = {(C, B),  

     (A, B),  

     (B, A) 

     (C, D)} 
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Examples of Graphs 

For each, what are the vertices and edges? 

 
• The web 

 

• Facebook 
 

• Highway map 
 

• Airline routes 

 

• Call graph of a program 

 

• … 6 

Directed Graphs 
In directed graphs (a.k.a., digraphs), edges have a direction: 

 

 

 

 

 

 
Thus, (u,v) ∈ E does not  imply (v,u) ∈ E. 

I.e., v adjacent to u does not imply u adjacent to v. 

 
In-degree of a vertex: number of inbound edges. 

Out-degree of a vertex : number of outbound edges. 

or 

2 edges  

here 
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Undirected Graphs 
In undirected graphs, edges have no specific direction (edges 
are always two-way): 

 

 

 

 

 
Thus, (u,v) ∈ E does imply (v,u) ∈ E.  Only one of these 
edges needs to be in the set; the other is implicit. 

 

Degree of a vertex: number of edges containing that vertex.  
(Same as number of adjacent  vertices.) 
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Weighted Graphs 

20 

30 

35 

60 

Mukilteo 

Edmonds 

Seattle 

Bremerton 

Bainbridge 

Kingston 

Clinton 

Each edge has an associated weight or cost. 
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Paths and Cycles 
• A path is a list of vertices {w1, w2, …, wq} such that     

(wi, wi+1) ∈ E for all 1 ≤ i < q 

• A cycle is a path that begins and ends at the same node 

Dallas 

Seattle 

San Francisco 

Chicago 

Salt Lake City 

P = {Seattle, Salt Lake City, Chicago,  

       Dallas, San Francisco, Seattle} 
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Path Length and Cost 

• Path length: the number of edges in the path 

• Path cost: the sum of the costs of each edge 

Seattle 

San Francisco 
Dallas 

Chicago 

Salt Lake City 

3.5 

2 2 

2.5 

3 

2 
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For path P: 

  length(P) = 5 

  cost(P) = 11.5 

How would you ensure that length(p)=cost(p) for all p? 
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Simple Paths and Cycles 

A simple path repeats no vertices (except that the first can 
also be the last): 

P = {Seattle, Salt Lake City, San Francisco, Dallas} 

P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle} 

 

A cycle is a path that starts and ends at the same node: 
P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle} 

P = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle} 

 

A simple cycle is a cycle that is also a simple path (in 
undirected graphs, no edge can be repeated). 
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Paths/Cycles in Directed Graphs 

Consider this directed graph: 

 

 

 

 

Is there a path from A to D? 

Does the graph contain any cycles? 
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Undirected Graph Connectivity 
Undirected graphs are connected if there is a path between any 
two vertices: 

 

 

 

 

A complete undirected graph has an edge between every pair 
of vertices: 

 

 

(Complete = fully connected) 

Connected graph Disconnected graph 
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Directed graphs are strongly connected  
if there is a path from any one vertex to  
any other. 

 

Directed graphs are weakly connected  
if there is a path between any two vertices, 
ignoring direction. 

 

A complete directed graph has a directed  
edge between every pair of vertices. 
(Again, complete = fully connected.) 

Directed Graph Connectivity 
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Trees as Graphs 

A tree is a graph that is: 

–  undirected 

–  acyclic 

–  connected 

 

 

 

Hey, that doesn’t look like a tree! 
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Rooted Trees 
We are more accustomed to: 

•Rooted trees (a tree node that is “special”) 

•Directed edges from parents to children (parent closer to root). 
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A rooted tree (root indicated in red)  

                              drawn two ways 

Rooted tree with directed  

edges from parents to children. 

Characteristics of this one? 
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Directed Acyclic Graphs (DAGs) 

DAGs are directed 

graphs with no 

(directed) cycles. 

main() 

add() 

access() 

mult() 

read() 

Aside: If program call-

graph is a DAG, then all 

procedure calls can be in-

lined 
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|E| and |V| 
How many edges |E| in a graph with |V| vertices? 

 

What if the graph is directed? 

 

What if it is undirected and connected? 

 

Can the following bounds be simplified? 

– Arbitrary graph: O(|E| + |V|) 

– Arbitrary graph: O(|E| + |V|2) 

– Undirected, connected: O(|E| log|V| + |V| log|V|) 

 

Some (semi-standard) terminology: 

– A graph is sparse if it has O(|V|) edges (upper bound). 

– A graph is dense if it has (|V|2) edges. 
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What’s the data structure? 

• Common query:  which edges are adjacent to a vertex 
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Representation 2: Adjacency List 

A list (array) of length |V| in which each entry stores a list 

(linked list) of all adjacent vertices 

Space requirements? 

Best for what kinds of graphs? 

Runtimes: 

Iterate over vertices? 

Iterate over edges? 

Iterate edges adj. to vertex? 

Existence of edge? 

A 

B 
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Representation 1: Adjacency Matrix 

A |V| x |V| matrix M in which an element M[u,v] is true 

if and only if there is an edge from u to v 

Space requirements? 

Best for what kinds of graphs? 

Runtimes: 

Iterate over vertices? 

Iterate over edges? 

Iterate edges adj. to vertex? 

Existence of edge? 
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Representing Undirected Graphs 

What do these reps look like for an undirected graph? 

A B C 
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B 
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D 

D 
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Adjacency matrix: 

Adjacency list: 
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Some Applications: 

Bus Routes in Downtown Seattle 

If we’re at 3rd and Pine, how can we get to 

1st and University using Metro?   

How about 4th and Seneca? 24 

Application: Topological Sort 
Given a graph, G = (V,E), output all the vertices in V 

sorted so that no vertex is output before any other vertex 

with an edge to it. 

CSE 142 CSE 143 

CSE 321 

CSE 341 

CSE 378 

CSE 326 

CSE 370 

CSE 403 

CSE 421 

CSE 467 

CSE 451 

CSE 322 

Is the output unique? 

CSE 303 CSE 457 

What kind of input 

graph is allowed? 
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Topological Sort: Take One 

1. Label each vertex with its in-degree (# inbound edges) 

2. While there are vertices remaining: 

a. Choose a vertex v of in-degree zero; output v 

b. Reduce the in-degree of all vertices adjacent to v 

c. Remove v from the list of vertices 

Runtime: 
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CSE 142 CSE 143 

CSE 321 

CSE 341 

CSE 378 

CSE 326 

CSE 370 

CSE 403 

CSE 421 

CSE 467 

CSE 451 

CSE 322 

CSE 303 CSE 457 
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void Graph::topsort(){ 

  Vertex v, w; 

   

labelEachVertexWithItsInDegree(); 

  

 for (int counter=0; counter < NUM_VERTICES;  

      counter++){ 

      v = findNewVertexOfDegreeZero(); 

     

      v.topologicalNum = counter; 

      for each w adjacent to v 

        w.indegree--; 

  } 

} 
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Topological Sort: Take Two 

1. Label each vertex with its in-degree 

2. Initialize a queue Q to contain all in-degree zero 
vertices 

3. While Q not empty 
a. v = Q.dequeue; output v 

b. Reduce the in-degree of all vertices adjacent to v 

c. If new in-degree of any such vertex u is zero 
Q.enqueue(u) 

Runtime: 

Note: could use a stack, list, set, 

          box, … instead of a queue 
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void Graph::topsort(){ 

  Queue q(NUM_VERTICES);   

  int counter = 0;  

  Vertex v, w; 

 labelEachVertexWithItsIn-degree(); 

 

  q.makeEmpty(); 

  for each vertex v 

    if (v.indegree == 0) 

      q.enqueue(v); 

 

  while (!q.isEmpty()){ 

    v = q.dequeue(); 

    v.topologicalNum = ++counter; 

    for each w adjacent to v 

      if (--w.indegree == 0) 

        q.enqueue(w); 

  } 

} 

intialize the 

queue 

get a vertex with 

indegree 0 

insert new 

eligible 

vertices 

Find a topological order for the 

following graph 
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If a graph has a cycle, there is no 

topological sort 

Consider the first vertex 

on the cycle in the 

topological sort 

It must have an 

incoming edge B 

A 

D 

E 

F 

C 

Lemma: If a graph is acyclic, it has 

a vertex with in degree 0 

Proof:   

Pick a vertex v1, if it has in-degree 0 then done 

If not, let (v2, v1) be an edge, if v2 has in-degree 0 then 

done 

If not, let (v3, v2) be an edge . . . 

If this process continues for more than n steps, we have a 

repeated vertex, so we have a cycle 


