
5/15/2016

1

1

CSE 332: Graphs

Richard Anderson

Spring 2016

2

Announcements

• This week and next week – Graph

Algorithms

• Reading, Monday and Wednesday, Weiss

9.1-9.3

• Guest lecture, Paul Beame

3

Graphs
•A formalism for representing relationships between
objects

Graph G = (V,E)

–Set of vertices:
V = {v1,v2,…,vn}

–Set of edges:
E = {e1,e2,…,em}

where each ei connects one

 vertex to another (vj,vk)

For directed edges, (vj,vk) and (vk,vj) are distinct.
(More on this later…)

A

B

C

V = {A, B, C, D}

E = {(C, B),

 (A, B),

 (B, A)

 (C, D)}

D

4

Graphs

Notation

 |V| = number of vertices

 |E| = number of edges

•v is adjacent to u if (u,v)∈ E

–neighbor of = adjacent to

–Order matters for directed edges

•It is possible to have an edge (v,v),

 called a loop.

–We will assume graphs without loops.

V = {A, B, C, D}

E = {(C, B),

 (A, B),

 (B, A)

 (C, D)}

A

B

C

D

5

Examples of Graphs

For each, what are the vertices and edges?

• The web

• Facebook

• Highway map

• Airline routes

• Call graph of a program

• … 6

Directed Graphs
In directed graphs (a.k.a., digraphs), edges have a direction:

Thus, (u,v) ∈ E does not imply (v,u) ∈ E.

I.e., v adjacent to u does not imply u adjacent to v.

In-degree of a vertex: number of inbound edges.

Out-degree of a vertex : number of outbound edges.

or

2 edges

here

A

B

C

D

A

B

C

D

5/15/2016

2

7

Undirected Graphs
In undirected graphs, edges have no specific direction (edges
are always two-way):

Thus, (u,v) ∈ E does imply (v,u) ∈ E. Only one of these
edges needs to be in the set; the other is implicit.

Degree of a vertex: number of edges containing that vertex.
(Same as number of adjacent vertices.)

A

B

C

D

8

Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.

9

Paths and Cycles
• A path is a list of vertices {w1, w2, …, wq} such that

(wi, wi+1) ∈ E for all 1 ≤ i < q

• A cycle is a path that begins and ends at the same node

Dallas

Seattle

San Francisco

Chicago

Salt Lake City

P = {Seattle, Salt Lake City, Chicago,

 Dallas, San Francisco, Seattle}
10

Path Length and Cost

• Path length: the number of edges in the path

• Path cost: the sum of the costs of each edge

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

For path P:

 length(P) = 5

 cost(P) = 11.5

How would you ensure that length(p)=cost(p) for all p?

11

Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
also be the last):

P = {Seattle, Salt Lake City, San Francisco, Dallas}

P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
P = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

P = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that is also a simple path (in
undirected graphs, no edge can be repeated).

12

Paths/Cycles in Directed Graphs

Consider this directed graph:

Is there a path from A to D?

Does the graph contain any cycles?

A

B

C

D

5/15/2016

3

13

Undirected Graph Connectivity
Undirected graphs are connected if there is a path between any
two vertices:

A complete undirected graph has an edge between every pair
of vertices:

(Complete = fully connected)

Connected graph Disconnected graph

14

Directed graphs are strongly connected
if there is a path from any one vertex to
any other.

Directed graphs are weakly connected
if there is a path between any two vertices,
ignoring direction.

A complete directed graph has a directed
edge between every pair of vertices.
(Again, complete = fully connected.)

Directed Graph Connectivity

15

Trees as Graphs

A tree is a graph that is:

– undirected

– acyclic

– connected

Hey, that doesn’t look like a tree!

A

B

D E

C

F

H G
16

Rooted Trees
We are more accustomed to:

•Rooted trees (a tree node that is “special”)

•Directed edges from parents to children (parent closer to root).

A

B

D E

C

F

H G

A

B

D E

C

F

H G

A

B

D E

C

F

H G

A rooted tree (root indicated in red)

 drawn two ways

Rooted tree with directed

edges from parents to children.

Characteristics of this one?

17

Directed Acyclic Graphs (DAGs)

DAGs are directed

graphs with no

(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-

graph is a DAG, then all

procedure calls can be in-

lined

18

|E| and |V|
How many edges |E| in a graph with |V| vertices?

What if the graph is directed?

What if it is undirected and connected?

Can the following bounds be simplified?

– Arbitrary graph: O(|E| + |V|)

– Arbitrary graph: O(|E| + |V|2)

– Undirected, connected: O(|E| log|V| + |V| log|V|)

Some (semi-standard) terminology:

– A graph is sparse if it has O(|V|) edges (upper bound).

– A graph is dense if it has (|V|2) edges.

5/15/2016

4

19

What’s the data structure?

• Common query: which edges are adjacent to a vertex

20

Representation 2: Adjacency List

A list (array) of length |V| in which each entry stores a list

(linked list) of all adjacent vertices

Space requirements?

Best for what kinds of graphs?

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge?

A

B

C

D
A

B

C

D

21

Representation 1: Adjacency Matrix

A |V| x |V| matrix M in which an element M[u,v] is true

if and only if there is an edge from u to v

Space requirements?

Best for what kinds of graphs?

Runtimes:

Iterate over vertices?

Iterate over edges?

Iterate edges adj. to vertex?

Existence of edge?

A

B

C

D

A B C

A

B

C

D

D

22

Representing Undirected Graphs

What do these reps look like for an undirected graph?

A B C

A

B

C

D

D

A

B

C

D

A

B

C

D

Adjacency matrix:

Adjacency list:

23

Some Applications:

Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to

1st and University using Metro?

How about 4th and Seneca? 24

Application: Topological Sort
Given a graph, G = (V,E), output all the vertices in V

sorted so that no vertex is output before any other vertex

with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

CSE 303 CSE 457

What kind of input

graph is allowed?

5/15/2016

5

25

Topological Sort: Take One

1. Label each vertex with its in-degree (# inbound edges)

2. While there are vertices remaining:

a. Choose a vertex v of in-degree zero; output v

b. Reduce the in-degree of all vertices adjacent to v

c. Remove v from the list of vertices

Runtime:

26

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

CSE 303 CSE 457

142

143

321

341

378

370

322

326

303

403

421

451

457

467

27

void Graph::topsort(){

 Vertex v, w;

labelEachVertexWithItsInDegree();

 for (int counter=0; counter < NUM_VERTICES;

 counter++){

 v = findNewVertexOfDegreeZero();

 v.topologicalNum = counter;

 for each w adjacent to v

 w.indegree--;

 }

}

28

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices

3. While Q not empty
a. v = Q.dequeue; output v

b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,

 box, … instead of a queue

29

void Graph::topsort(){

 Queue q(NUM_VERTICES);

 int counter = 0;

 Vertex v, w;

 labelEachVertexWithItsIn-degree();

 q.makeEmpty();

 for each vertex v

 if (v.indegree == 0)

 q.enqueue(v);

 while (!q.isEmpty()){

 v = q.dequeue();

 v.topologicalNum = ++counter;

 for each w adjacent to v

 if (--w.indegree == 0)

 q.enqueue(w);

 }

}

intialize the

queue

get a vertex with

indegree 0

insert new

eligible

vertices

Find a topological order for the

following graph

E

F

D

A

C

B
K

J
G

H
I

L

5/15/2016

6

If a graph has a cycle, there is no

topological sort

Consider the first vertex

on the cycle in the

topological sort

It must have an

incoming edge B

A

D

E

F

C

Lemma: If a graph is acyclic, it has

a vertex with in degree 0

Proof:

Pick a vertex v1, if it has in-degree 0 then done

If not, let (v2, v1) be an edge, if v2 has in-degree 0 then

done

If not, let (v3, v2) be an edge . . .

If this process continues for more than n steps, we have a

repeated vertex, so we have a cycle

