
1

CSE 332:
Locks and Deadlocks

Richard Anderson

Spring 2016

Announcements

2

Recall Bank Account Problem

3

class BankAccount {

 private int balance = 0;

 synchronized int getBalance()

 { return balance; }

 synchronized void setBalance(int x)

 { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if(amount > b)

 throw …

 setBalance(b – amount);

 }

 // deposit would also use synchronized

}

Call to setBalance in withdraw
- tries to lock this

Re-Entrant Lock

• A re-entrant lock (a.k.a. recursive lock)
- If a thread holds a lock, subsequent attempts to acquire the

same lock in the same thread won’t block

- withdraw can acquire the lock and setBalance can also

acquire it

- implemented by maintaining a count of how many times each

lock is acquired in each thread, and decrementing the count

on each release.

• Java synchronize locks are re-entrant

4

Lock everything? No.

For every memory location (e.g., object field), obey at least

one of the following:

1. Thread-local: only one thread sees it

2. Immutable: read-only

3. Shared-and-mutable: control access via a lock

all memory thread-local

memory
immutable

memory

need

synchronization

5

Thread local

Whenever possible, do not share resources

– easier to give each thread its own local copy

– only works if threads don’t need to communicate via resource

In typical concurrent programs, the vast majority of objects should be

thread local: shared memory should be rare—minimize it

6

Immutable

If location is read-only, no synchronizatin is necessary

Whenever possible, do not update objects

– make new objects instead!

– one of the key tenets of functional programming (CSE 341)

In practice, programmers usually over-use mutation –

minimize it

7

The rest: keep it synchronized

8

• Java provides many other features and details. See, for

example:

– Chapter 14 of CoreJava, Volume 1 by Horstmann/Cornell

– Java Concurrency in Practice by Goetz et al

9

Other Forms of Locking in Java

Locking Guidelines

• Correctness

• Consistency: make it well-defined

• Granularity: coarse to fine

• Critical Sections: make them small, atomic

• Leverage libraries

10

Consistent Locking

• Clear mapping of locks to resources

- followed by all methods

- clearly documented

- same lock can guard multiple resources

- what’s a resource? Conceptual:

- object

- field

- data structure (e.g., linked list, hash table) 11

Lock Granularity

• Coarse grained: fewer locks, more objects per lock

- e.g., one lock for entire data structure (e.g., linked list)

- advantage:

- disadvantage:

• Fine grained: more locks, fewer objects per lock

- e.g., one lock for each item in the linked list

12

…

…

Lock Granularity

Example: hashtable with separate chaining

- coarse grained: one lock for whole table

- fine grained: one lock for each bucket

Which supports more concurrency for insert and

lookup?

Which makes implementing resize easier?

Suppose hashtable maintains a numElements field. Which locking

approach is better?

13

Critical Sections

• Critical sections:
- how much code executes while you hold the lock?

- want critical sections to be short

- make them “atomic”: think about smallest sequence of

operations that have to occur at once (without data races,

interleavings)

14

Critical Sections

• Suppose we want to change a value in a hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

15

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

Critical Sections

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- will this work?

16

• Suppose we want to change a value in the hash table

- assume one lock for the entire table

- computing the new value takes a long time (“expensive”)

- convoluted fix:

Critical Sections

17

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true; // I can exit the loop!

 table.remove(k);

 table.insert(k,v2);

}}}

Leverage Libraries

• Use built-in libraries whenever possible

• In “real life”, it is unusual to have to write your own

data structure from scratch

– Implementations provided in standard libraries

– Point of CSE332 is to understand the key trade-offs,

abstractions, and analysis of such implementations

• Especially true for concurrent data structures

– Very difficult to provide fine-grained synchronization without

race conditions

– Standard thread-safe libraries like ConcurrentHashMap

written by world experts

18

Another Bank Operation

Consider transferring money:

What can go wrong?
19

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Deadlock

x and y are two different accounts

20

acquire lock for x

withdraw from x

block on lock for y

acquire lock for y

withdraw from y

block on lock for x

Thread 1: x.transferTo(1,y)

T
im

e

Thread 2: y.transferTo(1,x)

Dining Philosopher’s Problem

• 5 Philosopher’s eating rice around a table

• one chopstick to the left and right of each

• first grab the one on your left, then on your right…

21

Deadlock = Cycles

• Multiple threads depending on each other in a cycle

– T2 has lock that T1 needs

– T3 has lock that T2 needs

– T1 has lock that T3 needs

• Solution?

22

T1

T3

T2

How to Fix Deadlock?

In Banking example

23

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

How to Fix Deadlock?

Separate withdraw from deposit

Problems?

24

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt,

 BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

Possible Solutions

25

1. transferTo not synchronized

– exposes intermediate state after withdraw before deposit

– may be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for each pair of accounts

allowing transfers between them

– works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique ID and always acquire locks in

the same ID order

– Entire program should obey this order to avoid cycles

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

26

A5 A9

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

27

A5 A9

Transfer from bank

account 9 to account 5

1. lock

2. lock

3. withdraw from

4. deposit to

A5 A9

Ordering Accounts

Transfer from bank

account 5 to account 9

1. lock A5

2. lock A9

3. withdraw from A5

4. deposit to A9

28

A5 A9

Transfer from bank

account 9 to account 5

1. lock

2. lock

3. withdraw from

4. deposit to

A5 A9

No interleavings will produce deadlock!

– T1 cannot block on A9 until it has A5

– T2 cannot acquire A9 until it has A5

Banking Without Deadlocks

29

class BankAccount {

 …

 private int acctNumber; // must be unique

 void transferTo(int amt, BankAccount a) {

 if(this.acctNumber < a.acctNumber)

 synchronized(this) {

 synchronized(a) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 else

 synchronized(a) {

 synchronized(this) {

 this.withdraw(amt);

 a.deposit(amt);

 }}

 }

}

Lock Ordering

• Useful in many situations

– e.g., when moving an item from work queue A to B, need to

acquire locks in a particular order

• Doesn’t always work

– not all objects can be naturally ordered

– Java StringBuffer append is subject to deadlocks

‣ thread 1: append string A onto string B

‣ thread 2: append string B onto string A

30

Locking a Hashtable

• Consider a hashtable with
– many simultaneous lookup operations

– rare insert operations

• What’s the right locking strategy?

31

Read vs. Write Locks

• Recall race conditions
– two simultaneous write to same location

– one write, one simultaneous read

• But two simultaneous reads OK

• Synchronize is too strict
– blocks simultaneous reads

32

Readers/Writer Locks

33

A new synchronization ADT: The readers/writer lock

• A lock’s states fall into three categories:

– “not held”

– “held for writing” by one thread

– “held for reading” by one or more threads

• new: make a new lock, initially “not held”

• acquire_write: block if currently “held for reading” or “held for

writing”, else make “held for writing”

• release_write: make “not held”

• acquire_read: block if currently “held for writing”, else make/keep

“held for reading” and increment readers count

• release_read: decrement readers count, if 0, make “not held”

0 writers 1

0 readers

writers*readers==0

In Java

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteLock

•Different interface: methods readLock and writeLock return

objects that themselves have lock and unlock methods

34

Concurrency Summary

35

• Parallelism is powerful, but introduces new concurrency issues:

– Data races

– Interleaving

– Deadlocks

• Requires synchronization

– Locks for mutual exclusion

• Guidelines for correct use help avoid common pitfalls

