
5/9/2016

1

1

CSE 332: Parallel

Algorithms

Richard Anderson

Spring 2016

2

Announcements

Project 2: Due tonight

Project 3: Available soon

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

Speed-up on P processors: T1 / TP

3

Amdahl’s Fairly Trivial

Observation
• Most programs have

1. parts that parallelize well

2. parts that don’t parallelize at all

• Let S = proportion that can’t be parallelized, and
normalize T1 to 1

 1 = T1 = S + (1 – S)
• Suppose we get perfect linear speedup on the

parallel portion:

 TP = S + (1-S)/P

• So the overall speed-up on P processors is
(Amdahl’s Law): T1 / T P = 1 / (S + (1-S)/P)

 T1 / T  = 1 / S

4

Results from Friday

• Parallel Prefix

– O(N) Work

– O(log N) Span

• Quicksort

– Partition can be solved with Parallel Prefix

– Overall result

• O(N log N) work, O(log2N)) Span

5 6

Prefix sum

Prefix-sum:

input

output 6 9 20 30 38 40 47 55

6 3 11 10 8 2 7 8

Sum [0,7]:

Sum<0:

Sum [0,3]:

Sum<0:

Sum [4,7]:

Sum<4:

Sum [0,1]:

Sum<0:

Sum [2,3]:

Sum<2:

Sum [4,5]:

Sum<4:

Sum [6,7]:

Sum<6:

6 3 11 10 8 2 7 8

5/9/2016

2

7

Parallel Partition

• Pick pivot

• Pack (test: <6)

• Right pack (test: >=6)

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

8

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(log n) span

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = O(log n) + T(n/2) T(0) = T(1) = 1

– Span: O(log2 n)

– Parallelism (work/span) = O(n / log n)

9

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves 2T(n/2)

2. Merge results O(n)

Complexity (worst case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?
– Do left + right in parallel, improves to O(n)

– To do better, we need to…

10

Parallel Merge

How to merge two sorted lists in parallel?

0 4 6 8 9 1 2 3 5 7

11

Parallel Merge

1. Choose median M of left half O()

2. Split both arrays into < M, >=M O()

– how?

0 4 6 8 9 1 2 3 5 7

M

12

Parallel Merge

1. Choose median M of left half

2. Split both arrays into < M, >=M

– how?

3. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

5/9/2016

3

13

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

14

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

When we do each merge in parallel:

we split the bigger array in half

use binary search to split the smaller array

And in base case we copy to the output array

15

Parallel Mergesort Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

 int leftSize = left2 – left1

 int rightSize = right2 – right1

 // Assert: out2 – out1 = leftSize + rightSize

 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)

 sequential merge and copy into out[out1..out2]

 int mid = (left2 – left1)/2

 binarySearch arr[right1..right2] to find j such that

 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

16

Analysis

Parallel Merge (worst case)

– Height of partition call tree with n elements: O()

– Complexity of each thread (ignoring recursive call): O()

– Span: O()

Parallel Mergesort (worst case)

– Span: O()

– Parallelism (work / span): O()

Subtlety: uneven splits

– but even in worst case, get a 3/4 to 1/4 split

– still gives O(log n) height

0 4 6 8 1 2 3 5

17

Parallel Quicksort vs. Mergesort

Parallelism (work / span)
– quicksort: O(n / log n) avg case

– mergesort: O(n / log2 n) worst case

