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Announcements 

Project 2: Due tonight 

Project 3: Available soon 

Analyzing Parallel Programs 

Let TP be the running time on P processors 

 

Two key measures of run-time: 

• Work: How long it would take 1 processor = T1 

• Span: How long it would take infinity processors = T 

 

Speed-up on P processors: T1 / TP   
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Amdahl’s Fairly Trivial 

Observation 
• Most programs have  

1. parts that parallelize well 

2. parts that don’t parallelize at all 

 

• Let S = proportion that can’t be parallelized, and 
normalize T1 to 1 

   1 = T1 = S + (1 – S) 
• Suppose we get perfect linear speedup on the 

parallel portion: 

   TP = S + (1-S)/P 

• So the overall speed-up on P processors is 
(Amdahl’s Law): T1 / T P =  1 / (S + (1-S)/P) 
 
   T1 / T  =   1 / S 
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Results from Friday 

• Parallel Prefix 

– O(N) Work 

– O(log N) Span 

 

• Quicksort  

– Partition can be solved with Parallel Prefix 

– Overall result 

• O(N log N) work,  O(log2N)) Span 
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Prefix sum 

Prefix-sum: 

 

 

 

 
  

input 

output 6 9 20 30 38 40 47 55 

6 3 11 10 8 2 7 8 

Sum [0,7]: 

Sum<0: 

Sum [0,3]: 

Sum<0: 

Sum [4,7]: 

Sum<4: 

Sum [0,1]: 

Sum<0: 

Sum [2,3]: 

Sum<2: 

Sum [4,5]: 

Sum<4: 

Sum [6,7]: 

Sum<6: 

6 3 11 10 8 2 7 8 
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Parallel Partition 

• Pick pivot 

 

 

• Pack (test: <6)  

 

 

• Right pack (test: >=6) 

8 1 4 9 0 3 5 2 7 6 

1 4 0 3 5 2   

1 4 0 3 5 2 6 8 9 7 
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Parallel Quicksort 

Quicksort 

1. Pick a pivot                                                   O(1) 

2. Partition into two sub-arrays                     O(log n) span 

A. values less than pivot 

B. values greater than pivot 

3. Recursively sort A and B in parallel           T(n/2), avg 

 

Complexity (avg case) 
– T(n) = O(log n) + T(n/2)            T(0) = T(1) = 1 

– Span:  O( log2 n) 

– Parallelism (work/span) = O( n / log n ) 
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Sequential Mergesort 

Mergesort (review): 

1. Sort left and right halves                               2T(n/2) 

2. Merge results                                                  O(n) 

 

Complexity (worst case) 
– T(n) = n + 2T(n/2)            T(0) = T(1) = 1 

– O(n logn) 

 

How to parallelize? 
– Do left + right in parallel, improves to O(n) 

– To do better, we need to… 
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Parallel Merge 

 

 

 

How to merge two sorted lists in parallel? 

0 4 6 8 9 1 2 3 5 7 
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Parallel Merge 

 

 

 

1. Choose median M of left half             O(         ) 

2. Split both arrays into < M, >=M          O(         ) 

– how? 

0 4 6 8 9 1 2 3 5 7 

M 
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Parallel Merge 

 

 

 

1. Choose median M of left half              

2. Split both arrays into < M, >=M          

– how? 

3. Do two submerges in parallel 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 



5/9/2016 

3 

13 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 8 9 

0 4 1 2 3 5 9 

merge merge merge 

0 4 1 2 3 5 

0 4 1 2 3 5 

merge merge 

0 4 1 2 3 5 9 6 8 7 

8 

6 7 

6 7 

6 7 

6 7 

9 8 

9 8 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 8 9 

0 4 1 2 3 5 9 

merge merge merge 

0 4 1 2 3 5 

0 4 1 2 3 5 

merge merge 

0 4 1 2 3 5 9 6 8 7 

8 

6 7 

6 7 

6 7 

6 7 

9 8 

9 8 

When we do each merge in parallel: 

we split the bigger array in half 

use binary search to split the smaller array 

And in base case we copy to the output array 
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Parallel Mergesort Pseudocode 

Merge(arr[], left1, left2, right1, right2, out[], out1, out2 )  

 int leftSize = left2 – left1 

 int rightSize = right2 – right1 

 // Assert: out2 – out1 = leftSize + rightSize  

 // We will assume leftSize > rightSize without loss of generality 

  

 if (leftSize + rightSize < CUTOFF)  

  sequential merge and copy into out[out1..out2] 

  

 int mid = (left2 – left1)/2 

 binarySearch arr[right1..right2] to find j such that 

  arr[j] ≤ arr[mid] ≤ arr[j+1] 

  

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)  

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)  
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Analysis 

Parallel Merge (worst case) 

– Height of partition call tree with n elements:   O(           ) 

– Complexity of each thread (ignoring recursive call):  O(           ) 

– Span:   O(             ) 

 

Parallel Mergesort (worst case) 

– Span:  O(              ) 

– Parallelism (work / span):  O(                    ) 

 

Subtlety:  uneven splits 

 

– but even in worst case, get a 3/4 to 1/4 split 

– still gives O(log n) height  

  

0 4 6 8 1 2 3 5 
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Parallel Quicksort vs. Mergesort 

Parallelism (work / span) 
– quicksort:   O(n / log n)        avg case 

– mergesort:  O(n / log2 n)      worst case 
 


