CSE 332: Parallel Algorithms

Richard Anderson Spring 2016

Announcements

Project 2: Due tonight

Project 3: Available soon

Analyzing Parallel Programs

Let **T**_P be the running time on **P** processors

Two key measures of run-time:

- Work: How long it would take 1 processor = T₁
- Span: How long it would take infinity processors = T_∞

Speed-up on P processors: T₁ / T_P

Amdahl's Fairly Trivial Observation

- Most programs have
 - 1. parts that parallelize well
 - 2. parts that don't parallelize at all
- Let S = proportion that can't be parallelized, and normalize T₁ to 1

$$1 = T_1 = S + (1 - S)$$

 Suppose we get perfect linear speedup on the parallel portion:

$$T_{P} = S + (1-S)/P$$

• So the overall speed-up on P processors is (Amdahl's Law): $T_1/T_P = 1/(S + (1-S)/P)$

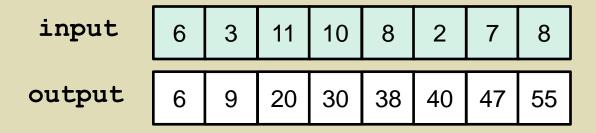
$$T_1/T_\infty = 1/S$$

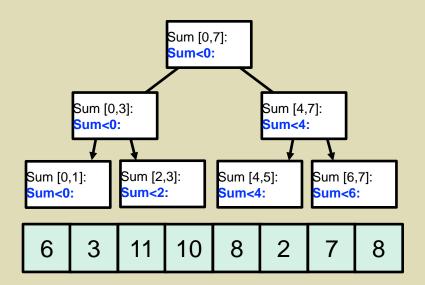
Results from Friday

- Parallel Prefix
 - O(N) Work
 - O(log N) Span
- Quicksort
 - Partition can be solved with Parallel Prefix
 - Overall result
 - O(N log N) work, O(log²N)) Span

Prefix sum

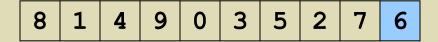
Prefix-sum:



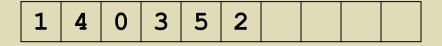


Parallel Partition

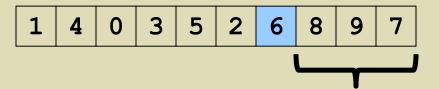
Pick pivot



Pack (test: <6)



Right pack (test: >=6)



Parallel Quicksort

Quicksort

1. Pick a pivot

O(1)

2. Partition into two sub-arrays

O(log n) span

- A. values less than pivot
- B. values greater than pivot
- 3. Recursively sort A and B in parallel

T(n/2), avg

Complexity (avg case)

 $- T(n) = O(\log n) + T(n/2)$

T(0) = T(1) = 1

- Span: O(log² n)
- Parallelism (work/span) = O(n / log n)

Sequential Mergesort

Mergesort (review):

- 1. Sort left and right halves
- 2. Merge results

2T(n/2)

O(n)

Complexity (worst case)

- T(n) = n + 2T(n/2) T(0) = T(1) = 1

O(n logn)

How to parallelize?

- Do left + right in parallel, improves to O(n)
- To do better, we need to...

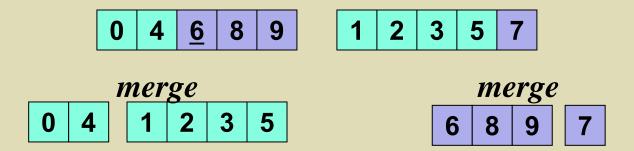
Parallel Merge

How to merge two sorted lists in parallel?

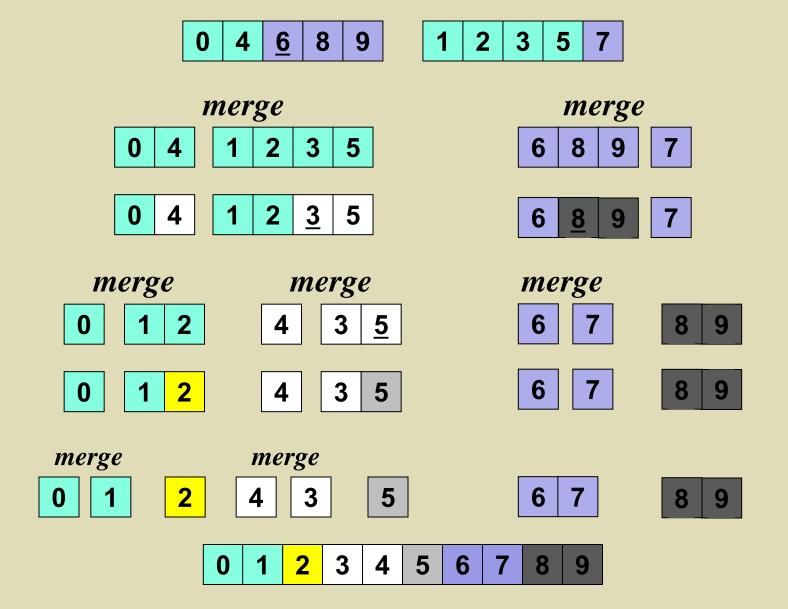
Parallel Merge

- 1. Choose median M of left half O()
- 2. Split both arrays into < M, >=M O()
 - how?

Parallel Merge



- 1. Choose median M of left half
- 2. Split both arrays into < M, >=M
 - how?
- 3. Do two submerges in parallel



 merge

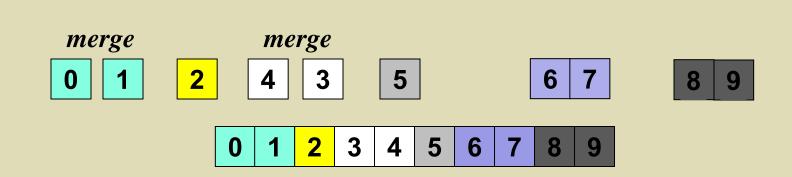
 0
 4
 1
 2
 3
 5

 merge

 6
 8
 9
 7

When we do each merge in parallel:

- +we split the bigger array in half
- +use binary search to split the smaller array
- **→**And in base case we copy to the output array



Parallel Mergesort Pseudocode

```
Merge(arr[], left<sub>1</sub>, left<sub>2</sub>, right<sub>1</sub>, right<sub>2</sub>, out[], out<sub>1</sub>, out<sub>2</sub>)
     int leftSize = left<sub>2</sub> - left<sub>1</sub>
     int rightSize = right<sub>2</sub> - right<sub>1</sub>
     // Assert: out_2 - out_1 = leftSize + rightSize
     // We will assume leftSize > rightSize without loss of generality
     if (leftSize + rightSize < CUTOFF)
           sequential merge and copy into out[out1..out2]
     int mid = (left_2 - left_1)/2
      binarySearch arr[right1..right2] to find j such that
           arr[i] \leq arr[mid] \leq arr[i+1]
     Merge(arr[], left<sub>1</sub>, mid, right<sub>1</sub>, j, out[], out<sub>1</sub>, out<sub>1</sub>+mid+j)
     Merge(arr[], mid+1, left<sub>2</sub>, j+1, right<sub>2</sub>, out[], out<sub>1</sub>+mid+j+1, out<sub>2</sub>)
```

Analysis

Parallel Merge (worst case)

- Height of partition call tree with n elements: O()
- Complexity of each thread (ignoring recursive call): O()
- Span: O()

Parallel Mergesort (worst case)

- Span: O()
- Parallelism (work / span): O(

Subtlety: uneven splits

- 0 4 6 8 1 2 3
- but even in worst case, get a 3/4 to 1/4 split
 - still gives O(log n) height

Parallel Quicksort vs. Mergesort

Parallelism (work / span)

- quicksort: O(n / log n) avg case
- mergesort: O(n / log² n) worst case