CSE 332: Parallel Algorithms

Richard Anderson Spring 2016

Announcements

Project 2: Due tonight Project 3: Available soon

Analyzing Parallel Programs

Let $\mathbf{T}_{\mathbf{P}}$ be the running time on \mathbf{P} processors

Two key measures of run-time:

- Work: How long it would take 1 processor = T_{1}
- Span: How long it would take infinity processors $=T_{\infty}$

Speed-up on \mathbf{P} processors: $\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}$

Amdahl's Fairly Trivial Observation

- Most programs have

1. parts that parallelize well
2. parts that don't parallelize at all

- Let $S=$ proportion that can't be parallelized, and normalize T_{1} to 1

$$
1=T_{1}=S+(1-S)
$$

- Suppose we get perfect linear speedup on the parallel portion:

$$
T_{P}=S+(1-S) / P
$$

- So the overall speed-up on P processors is (Amdahl's Law): $\mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}=1 /(\mathrm{S}+(1-\mathrm{S}) / \mathrm{P})$

$$
T_{1} / T_{\infty}=1 / S
$$

Results from Friday

- Parallel Prefix
- O(N) Work
- O(log N) Span
- Quicksort
- Partition can be solved with Parallel Prefix
- Overall result
- $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ work, $\left.\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)\right)$ Span

Prefix sum

Prefix-sum:

6	3	11	10	8	2	7	8

Parallel Partition

- Pick pivot

8	1	4	9	0	3	5	2	7	6

- Pack (test: <6)

1	4	0	3	5	2				

- Right pack (test: >=6)

Parallel Quicksort

Quicksort

1. Pick a pivot
2. Partition into two sub-arrays

O(1)
O(log n) span
A. values less than pivot
B. values greater than pivot
3. Recursively sort A and B in parallel

Complexity (avg case)
$-T(n)=O(\log n)+T(n / 2)$

$$
T(0)=T(1)=1
$$

- Span: O($\log ^{2} n$)
- Parallelism (work/span) $=O(\mathrm{n} / \log \mathrm{n})$

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves

2T(n/2)
2. Merge results
$\mathrm{O}(\mathrm{n})$

Complexity (worst case)

$$
\begin{aligned}
& -T(n)=n+2 T(n / 2) \\
& -O(n \log n)
\end{aligned}
$$

How to parallelize?

- Do left + right in parallel, improves to O(n)
- To do better, we need to...

Parallel Merge

| 0 | 4 | 6 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- |\quad| 1 | 2 | 3 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |

How to merge two sorted lists in parallel?

Parallel Merge

1. Choose median M of left half

O()
2. Split both arrays into < M, >=M

O()

- how?

Parallel Merge

1. Choose median M of left half
2. Split both arrays into $<\mathrm{M},>=\mathrm{M}$

- how?

3. Do two submerges in parallel

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|}
\hline 0 & 4 & \underline{6} & 8 & 9 \\
\hline
\end{array} \quad \begin{array}{ll|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 7 \\
\hline
\end{array} \\
& \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 4 & 1 & 2 & \underline{3} & 5 \\
\hline
\end{array} \\
& \text { merge merge } \\
& \begin{array}{|l|l|ll|l|l|}
\hline 0 & 1 & 2 & 4 & 3 & \underline{5} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & & 4 & 3 \\
\hline
\end{array} \\
& \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
\end{aligned}
$$

			4	$\underline{6}$	8	9	1	2	3	5	7		
merge									merge				
0	4	1	1	2	3	5			6	8	8	9	7

When we do each merge in parallel:
twe split the bigger array in half
tuse binary search to split the smaller array
+And in base case we copy to the output array

0	1	2	3	4	5	6	7	8	9

Parallel Mergesort Pseudocode

Merge(arr[], left ${ }_{1}$, left ${ }_{2}$, right $_{1}$, right $_{2}$, out[], out ${ }_{1}$, out ${ }_{2}$)

```
int leftSize = left 2 - left 
int rightSize = right 
// Assert: out }\mp@subsup{\mp@code{L}}{- out }{1}= leftSize + rightSize
// We will assume leftSize > rightSize without loss of generality
if (leftSize + rightSize < CUTOFF)
    sequential merge and copy into out[out1..out2]
int mid = (left 2 - left }\mp@subsup{)}{1}{}/
binarySearch arr[right1..right2] to find j such that
    arr[j] \leq arr[mid] \leq arr[j+1]
Merge(arr[], left }\mp@subsup{}{1}{},\mp@subsup{\mathrm{ mid, right }}{1}{},j,\mathrm{ ,out[], out }\mp@subsup{}{1}{},\mp@subsup{\mathrm{ out }}{1}{}+\mp@subsup{\mathrm{ mid }}{\mathrm{ j}}{
Merge(arr[], mid +1, left }\mp@subsup{}{2}{},j+1,\mp@subsup{\mathrm{ right }}{2}{},\mathrm{ out[], out }\mp@subsup{}{1}{}+\mp@subsup{\mathrm{ mid }}{+j}{}+1,\mp@subsup{\mathrm{ ,out }}{2}{}
```


Analysis

Parallel Merge (worst case)

- Height of partition call tree with n elements: O()
- Complexity of each thread (ignoring recursive call): O(
- Span: O()

Parallel Mergesort (worst case)

- Span: O()
- Parallelism (work / span): O(

Subtlety: uneven splits

0	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$

- but even in worst case, get a $3 / 4$ to $1 / 4$ split
- still gives $\mathrm{O}(\log \mathrm{n})$ height

Parallel Quicksort vs. Mergesort

Parallelism (work / span)

- quicksort: O(n / log n) avg case
- mergesort: $O\left(n / \log ^{2} n\right)$ worst case

