CSE 332: Parallel Sorting

Richard Anderson
Spring 2016

Announcements

Analyzing Parallel Programs

Let $\mathbf{T}_{\mathbf{P}}$ be the running time on \mathbf{P} processors
Two key measures of run-time:

- Work: How long it would take 1 processor $=T_{1}$
- Span: How long it would take infinity processors $=\mathbf{T}_{\infty}$ - The hypothetical ideal for parallelization
- This is the longest "dependence chain" in the computation
- Example: $O(\log n)$ for summing an array
- Also called "critical path length" or "computational depth"
- Parallel quicksort, merge sort
- useful building blocks: prefix, pack

Divide and Conquer Algorithms

Our fork and join frequently look like this:

In this context, the span $\left(T_{\infty}\right)$ is:
-The longest dependence-chain; longest 'branch' in parallel 'tree'

- Example: $O(\log n)$ for summing an array; we halve the data down to our cut-off, then add back together; $O(\log n)$ steps, $O(1)$ time for each -Also called "critical path length" or "computational depth"

Parallel Speed-up

- Speed-up on \mathbf{P} processors: $\mathbf{T}_{1} / \mathbf{T}_{\mathbf{P}}$
- If speed-up is \mathbf{P}, we call it perfect linear speed-up
- e.g., doubling \mathbf{P} halves running time
- hard to achieve in practice
- Parallelism is the maximum possible speed-up: $\mathbf{T}_{\mathbf{1}} / \mathbf{T}_{\infty}$ - if you had infinite processors

Estimating T_{p}

- How to estimate \mathbf{T}_{P} (e.g., $\mathrm{P}=4$)?
- Lower bounds on $\mathbf{T}_{\mathbf{p}}$ (ignoring memory, caching...)

1. T_{∞}
2. T_{1} / P

- which one is the tighter (higher) lower bound?
- The ForkJoin Java Framework achieves the following expected time asymptotic bound:

$$
T_{P} \in O\left(T_{\infty}+T_{1} / P\right)
$$

- this bound is optimal

Amdahl's Law

- Let $\mathrm{T}_{1}=1$ unit of time
- Let $\mathrm{S}=$ proportion that can't be parallelized

$$
1=T_{1}=S+(1-S)
$$

- Suppose we get perfect linear speedup on the parallel portion:

$$
\mathrm{T}_{\mathrm{P}}=
$$

- So the overall speed-up on P processors is (Amdahl's Law):

$$
\mathrm{T}_{1} / \mathrm{T}_{\mathrm{P}}=
$$

- If $1 / 3$ of your program is parallelizable, max speedup is:

Pretty Bad News

- Suppose 25% of your program is sequential.
- Then a billion processors won't give you more than a $4 x$ speedup!
- What portion of your program must be parallelizable to get $10 x$ speedup on a 1000 core GPU?
- $10<=1 /(S+(1-S) / 1000)$

$$
T_{1} / T_{\infty}=
$$

- Motivates minimizing sequential portions of your programs

Amdahl's Law

- Most programs have

1. parts that parallelize well
2. parts that don't parallelize at all

- The latter become bottlenecks

Take Aways

- Parallel algorithms can be a big win
- Many fit standard patterns that are easy to implement
- Can't just rely on more processors to make things faster (Amdahl's Law)

Parallelizable?

Fibonacci (N)

Parallelizable?

Prefix-sum:

input | 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output

output $[i]=\sum_{0}^{i-1}$ input $[i]$

First Pass: Sum

Sum [0,7]:

First Pass: Sum

2nd Pass: Use Sum for Prefix-Sum

Prefix-Sum Analysis

- First Pass (Sum):
- span =
- Second Pass:
- single pass from root down to leaves
- update children's sum<K value based on parent and sibling
- span =
- Total
- span =

Go from root down to leaves

Root

- sum $<0=$

Left-child

- sum $<K=$

Right-child

- sum $<K=$

Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)

- maximum element to the left of i
- is there an element to the left of i i satisfying some property?
- count of elements to the left of i satisfying some property

We can solve all of these problems in the same way

Pack

Pack:

input | 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | test: $x<8$?

output

Output array of elements satisfying test, in original order

Parallel Pack

1. map test input, output $[0,1]$ bit vector

input | 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | test: $\mathbf{x}<8$?

test | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Parallel Pack

1. map test input, output $[0,1]$ bit vector

2. transform bit vector into array of indices into result array pos

Parallel Pack

1. map test input, output $[0,1]$ bit vector

| input | 6 | 3 | 11 | 10 | 8 | 2 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| test | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |

2. prefix-sum on bit vector
pos

$\mathbf{1}$	$\mathbf{2}$	2	2	2	$\mathbf{3}$	$\mathbf{4}$	4

3. map input to corresponding positions in output
\square

- if (test[i] == 1) output[pos[i]] = input[i]

Parallel Pack Analysis

- Parallel Pack

1. map:	O() span
2. sum-prefix:	O() span
3. map:	O() span

- Total: O() span

Parallel Quicksort

Quicksort

1. Pick a pivot

O(1)
2. Partition into two sub-arrays
A. values less than pivot
B. values greater than pivot
$\mathrm{O}(\mathrm{n})$
3. Recursively sort A and B in parallel
$T(n / 2)$, avg

Complexity (avg case)
$-\mathrm{T}(\mathrm{n})=\mathrm{n}+\mathrm{T}(\mathrm{n} / 2) \quad \mathrm{T}(0)=\mathrm{T}(1)=1$

- Span: O()
- Parallelism (work/span) $=\mathrm{O}$ (

Taking it to the next level...

- $O(\log n)$ speed-up with infinite processors is okay, but a bit underwhelming
- Sort 10^{9} elements $30 x$ faster
- Bottleneck:

How to parallelize?

Sequential Quicksort

Quicksort (review):

1. Pick a pivot	$O(1)$
2. Partition into two sub-arrays	$O(n)$
A. values less than pivot	
B. values greater than pivot	$2 T(n / 2)$, avg

Complexity (avg case)
$-T(n)=n+2 T(n / 2) \quad T(0)=T(1)=1$

- O($n \log n$)

Parallel Partition

Partition into sub-arrays
A. values less than pivot
B. values greater than pivot

What parallel operation can we use for this?

- Pick pivot
- Pack (test: <6)

- Right pack (test: >=6)

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 4 & 0 & 3 & 5 & 2 & 6 & 8 & 9 & 7 \\
\hline
\end{array}
$$

Parallel Partition

Parallel Quicksort

Quicksort

1. Pick a pivot
2. Partition into two sub-arrays
$\mathrm{O}(1)$
A. values less than pivot B. values greater than pivot
3. Recursively sort A and B in parallel $T(n / 2)$, avg

Complexity (avg case)
$-\mathrm{T}(\mathrm{n})=\mathrm{O}(\quad)+\mathrm{T}(\mathrm{n} / 2) \quad \mathrm{T}(0)=\mathrm{T}(1)=1$

- Span: O()
- Parallelism (work/span) $=O$ ()

Parallel Merge

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 4 & 6 & 8 & 9 \\
\hline 1 & 2 & 2 & 3 & 5 & 7 \\
\hline
\end{array}
$$

How to merge two sorted lists in parallel?

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves $2 \mathrm{~T}(\mathrm{n} / 2)$
2. Merge results

O(n)

Complexity (worst case)
$-\mathrm{T}(\mathrm{n})=\mathrm{n}+2 \mathrm{~T}(\mathrm{n} / 2) \quad \mathrm{T}(0)=\mathrm{T}(1)=1$

- $\mathrm{O}(\mathrm{n} \log \mathrm{n})$

How to parallelize?

- Do left + right in parallel, improves to O(n)
- To do better, we need to..

Parallel Merge

1. Choose median M of left half $O()$
2. Split both arrays into $<\mathrm{M},>=\mathrm{M} \quad \mathrm{O}$ () - how?

3. Choose median M of left half
4. Split both arrays into $<\mathrm{M},>=\mathrm{M}$

- how?

3. Do two submerges in parallel

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 4 & \underline{6} & 8 & 9 \\
\hline
\end{array} \quad \begin{array}{ll}
\hline 1 & 2
\end{array} \mathbf{3} \right\rvert\, \begin{array}{c}
5 \\
\hline
\end{array} \\
&
\end{aligned}
$$

When we do each merge in parallel:
twe split the bigger array in half
tuse binary search to split the smaller array
+And in base case we copy to the output array

0	1	2	3	4	5	6	7	8	9

Parallel Mergesort Pseudocode

Merge(arr[], left, , left 2 , right $_{1}$, right ${ }_{2}$, out[], out ${ }_{1}$, out ${ }_{2}$)
int leftSize $=$ left $_{2}-$ left $_{1}$
int rightSize $=$ right $_{2}-$ right $_{1}$
// Assert: out ${ }_{2}-$ out $_{1}=$ leftSize + rightSize
// We will assume leftSize > rightSize without loss of generality
if (leftSize + rightSize $<$ CUTOFF)
sequential merge and copy into out[out1..out2]
int mid $=\left(\right.$ left $_{2}-$ left $\left._{1}\right) / 2$
binarySearch arr[right1...right2] to find j such that $\operatorname{arr[j]} \leq \operatorname{arr}[\operatorname{mid}] \leq \operatorname{arr}[j+1]$

Merge(arr[], left ${ }_{1}$, mid, right ${ }_{1}$, j , out[], out ${ }_{1}$, out ${ }_{1}+$ mid 2 j)
Merge(arr[], mid +1 , left $2, j+1$, right $_{2}$, out $\left[\right.$, out $t_{1}+$ mid $^{2}+j+1$, out ${ }_{2}$)

Analysis

Parallel Merge (worst case)

- Height of partition call tree with n elements: $O(\quad)$
- Complexity of each thread (ignoring recursive call): O()
- Span: O()

Parallel Mergesort (worst case)

- Span: O(
)
- Parallelism (work / span): O(

Subtlety: uneven splits

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 0 & 4 & 6 & 8 \\
\hline
\end{array} \quad \begin{array}{ll|l|l|l|}
\hline 1 & 2 & 3 & 5 \\
\hline
\end{array}
$$

- but even in worst case, get a $3 / 4$ to $1 / 4$ split
- still gives $O(\log n)$ height
\qquad

Parallel Quicksort vs. Mergesort

Parallelism (work / span)

- quicksort: O(n/logn) avg case
- mergesort: $O\left(n / \log ^{2} n\right.$) worst case

