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Announcements 
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Recap 

Last lectures 

– simple parallel programs 

– common patterns:  map, reduce 

– analysis tools (work, span, parallelism) 

 

Now 

– Amdahl’s Law 

– Parallel quicksort, merge sort 

– useful building blocks:  prefix, pack 

Analyzing Parallel Programs 

Let TP be the running time on P processors 

 

Two key measures of run-time: 

• Work: How long it would take 1 processor = T1 

• Span: How long it would take infinity processors = T 

– The hypothetical ideal for parallelization 

– This is the longest “dependence chain” in the computation 

– Example: O(log n) for summing an array  

– Also called “critical path length” or “computational depth” 
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Divide and Conquer Algorithms 

Our fork and join frequently look like this: 

 

 

 

 

 

 

 

 

base cases 

divide  

combine 

results  

In this context, the span (T) is: 
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’ 

•Example: O(log n) for summing an array; we halve the data down to our 

cut-off, then add back together; O(log n) steps, O(1) time for each 

•Also called “critical path length” or “computational depth” 

5 

Parallel Speed-up 

• Speed-up on P processors: T1 / TP   

 

• If speed-up is P, we call it perfect linear speed-up 

– e.g., doubling P halves running time 

– hard to achieve in practice 

 

• Parallelism is the maximum possible speed-up: T1 / T   

– if you had infinite processors 
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Estimating Tp 

• How to estimate TP  (e.g., P = 4)? 

 

• Lower bounds on TP  (ignoring memory, caching...) 

1. T  

2. T1 / P 

– which one is the tighter (higher) lower bound? 

 

 

• The ForkJoin Java Framework achieves the following 

expected time asymptotic bound: 

                TP  ϵ  O(T  + T1 / P) 
– this bound is optimal 
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Amdahl’s Law 

• Most programs have  

1. parts that parallelize well 

2. parts that don’t parallelize at all 

 

 

 

 

 

• The latter become bottlenecks 
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Amdahl’s Law 

• Let T1 = 1 unit of time 

• Let S = proportion that can’t be parallelized 

   1 = T1 = S + (1 – S) 

• Suppose we get perfect linear speedup on the parallel portion: 

   TP =  

• So the overall speed-up on P processors is (Amdahl’s Law): 

   T1 / T P = 

 

   T1 / T  = 

 

• If 1/3 of your program is parallelizable, max speedup is: 
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Pretty Bad News 

• Suppose 25% of your program is sequential.  

– Then a billion processors won’t give you more than a 4x 

speedup! 

 

• What portion of your program must be parallelizable 

to get 10x speedup on a 1000 core GPU? 

– 10 <= 1 / (S + (1-S)/1000) 

 

• Motivates minimizing sequential portions of your 

programs 
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Take Aways 

• Parallel algorithms can be a big win 

 

• Many fit standard patterns that are easy to implement 

 

• Can’t just rely on more processors to make things 

faster (Amdahl’s Law) 
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Parallelizable? 

Fibonacci (N) 
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Parallelizable? 

Prefix-sum: 

 

 

 

 

𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] =  𝑖𝑛𝑝𝑢𝑡[𝑖]𝑖−1
0  

input 

output 

6 3 11 10 8 2 7 8 
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First Pass:  Sum 

6 3 11 10 8 2 7 8 

Sum [0,7]: 
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First Pass:  Sum 

Sum [0,7]: 

Sum [0,3]: Sum [4,7]: 

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]: 

6 3 11 10 8 2 7 8 
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2nd Pass:  Use Sum for Prefix-Sum 

Sum [0,7]: 

Sum<0: 

Sum [0,3]: 

Sum<0: 

Sum [4,7]: 

Sum<4: 

Sum [0,1]: 

Sum<0: 

Sum [2,3]: 

Sum<2: 

Sum [4,5]: 

Sum<4: 

Sum [6,7]: 

Sum<6: 

6 3 11 10 8 2 7 8 
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2nd Pass:  Use Sum for Prefix-Sum 
Sum [0,7]: 

Sum<0: 

Sum [0,3]: 

Sum<0: 

Sum [4,7]: 

Sum<4: 

Sum [0,1]: 

Sum<0: 

Sum [2,3]: 

Sum<2: 

Sum [4,5]: 

Sum<4: 

Sum [6,7]: 

Sum<6: 

6 3 11 10 8 2 7 8 

Go from root down to leaves 

Root 

– sum<0 =   

Left-child 

– sum<K =  

Right-child 

– sum<K = 
18 

Prefix-Sum Analysis 

• First Pass (Sum):   

– span =  

• Second Pass: 

– single pass from root down to leaves 

• update children’s sum<K value based on parent and sibling 

– span =  

 

• Total 

– span =  
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Parallel Prefix, Generalized 

Prefix-sum is another common pattern (prefix problems) 

– maximum element to the left of i 

– is there an element to the left of i i satisfying some property? 

– count of elements to the left of i satisfying some property 

– … 

 

We can solve all of these problems in the same way 
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Pack 

Pack:  

 

 

 

 

Output array of elements satisfying test, in original order 

 

 

 

 

input 

output 

6 3 11 10 8 2 7 8 test:  X < 8? 
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Parallel Pack? 

Pack 

 

 

 

 

•Determining which elements to include is easy 

•Determining where each element goes in output is hard 

– seems to depend on previous results 

 

 

 

 

 

 

input 

output 6 3 2 7 

6 3 11 10 8 2 7 8 test:  X < 8? 
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Parallel Pack 

input 

test 1 1 0 0 0 1 1 0 

6 3 11 10 8 2 7 8 test:  X < 8? 

1.  map test input, output [0,1] bit vector 
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Parallel Pack 

input 

test 1 1 0 0 0 1 1 0 

6 3 11 10 8 2 7 8 test:  X < 8? 

1.  map test input, output [0,1] bit vector 

2.  transform bit vector into array of indices into result array 

1 2 3 4 pos 
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Parallel Pack 

input 

test 1 1 0 0 0 1 1 0 

6 3 11 10 8 2 7 8 test:  X < 8? 

1.  map test input, output [0,1] bit vector 

2.  prefix-sum on bit vector 

1 2 2 2 2 3 4 4 

3.  map input to corresponding positions in output 

pos 

6 3 2 7 

 - if (test[i] == 1) output[pos[i]] = input[i] 

output 
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Parallel Pack Analysis 

• Parallel Pack 

1. map:             O(        ) span 

2. sum-prefix:   O(        ) span 

3. map:             O(        ) span 

 

• Total:      O(        ) span 
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Sequential Quicksort 

Quicksort (review): 

1. Pick a pivot                                                   O(1) 

2. Partition into two sub-arrays                         O(n) 

A. values less than pivot 

B. values greater than pivot 

3. Recursively sort A and B                           2T(n/2), avg 

 

Complexity (avg case) 
– T(n) = n + 2T(n/2)            T(0) = T(1) = 1 

– O(n logn) 

 

How to parallelize? 
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Parallel Quicksort 

Quicksort 

1. Pick a pivot                                                   O(1) 

2. Partition into two sub-arrays                         O(n) 

A. values less than pivot 

B. values greater than pivot 

3. Recursively sort A and B in parallel           T(n/2), avg 

 

Complexity (avg case) 
– T(n) = n + T(n/2)            T(0) = T(1) = 1 

– Span:  O(        ) 

– Parallelism (work/span) = O(             ) 
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Taking it to the next level… 

• O(log n) speed-up with infinite processors is okay, but 

a bit underwhelming 

– Sort 109 elements 30x faster 

 

• Bottleneck:    
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Parallel Partition 

Partition into sub-arrays 
A. values less than pivot 

B. values greater than pivot 

 

What parallel operation can we use for this? 
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Parallel Partition 

• Pick pivot 

 

 

• Pack (test: <6)  

 

 

• Right pack (test: >=6) 

8 1 4 9 0 3 5 2 7 6 

1 4 0 3 5 2   

1 4 0 3 5 2 6 8 9 7 
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Parallel Quicksort 

Quicksort 

1. Pick a pivot                                                   O(1) 

2. Partition into two sub-arrays                     O(      ) span 

A. values less than pivot 

B. values greater than pivot 

3. Recursively sort A and B in parallel           T(n/2), avg 

 

Complexity (avg case) 
– T(n) = O(       ) + T(n/2)            T(0) = T(1) = 1 

– Span:  O(        ) 

– Parallelism (work/span) = O(             ) 
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Sequential Mergesort 

Mergesort (review): 

1. Sort left and right halves                               2T(n/2) 

2. Merge results                                                  O(n) 

 

Complexity (worst case) 
– T(n) = n + 2T(n/2)            T(0) = T(1) = 1 

– O(n logn) 

 

How to parallelize? 
– Do left + right in parallel, improves to O(n) 

– To do better, we need to… 
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Parallel Merge 

 

 

 

How to merge two sorted lists in parallel? 

0 4 6 8 9 1 2 3 5 7 
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Parallel Merge 

 

 

 

1. Choose median M of left half             O(         ) 

2. Split both arrays into < M, >=M          O(         ) 

– how? 

0 4 6 8 9 1 2 3 5 7 

M 
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Parallel Merge 

 

 

 

1. Choose median M of left half              

2. Split both arrays into < M, >=M          

– how? 

3. Do two submerges in parallel 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 8 9 

0 4 1 2 3 5 9 

merge merge merge 

0 4 1 2 3 5 

0 4 1 2 3 5 

merge merge 

0 4 1 2 3 5 9 6 8 7 

8 

6 7 

6 7 

6 7 

6 7 

9 8 

9 8 
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0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 

merge 

6 8 9 7 

merge 

0 4 1 2 3 5 8 9 

0 4 1 2 3 5 9 

merge merge merge 

0 4 1 2 3 5 

0 4 1 2 3 5 

merge merge 

0 4 1 2 3 5 9 6 8 7 

8 

6 7 

6 7 

6 7 

6 7 

9 8 

9 8 

When we do each merge in parallel: 

we split the bigger array in half 

use binary search to split the smaller array 

And in base case we copy to the output array 
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Parallel Mergesort Pseudocode 

Merge(arr[], left1, left2, right1, right2, out[], out1, out2 )  

 int leftSize = left2 – left1 

 int rightSize = right2 – right1 

 // Assert: out2 – out1 = leftSize + rightSize  

 // We will assume leftSize > rightSize without loss of generality 

  

 if (leftSize + rightSize < CUTOFF)  

  sequential merge and copy into out[out1..out2] 

  

 int mid = (left2 – left1)/2 

 binarySearch arr[right1..right2] to find j such that 

  arr[j] ≤ arr[mid] ≤ arr[j+1] 

  

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)  

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)  
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Analysis 

Parallel Merge (worst case) 

– Height of partition call tree with n elements:   O(           ) 

– Complexity of each thread (ignoring recursive call):  O(           ) 

– Span:   O(             ) 

 

Parallel Mergesort (worst case) 

– Span:  O(              ) 

– Parallelism (work / span):  O(                    ) 

 

Subtlety:  uneven splits 

 

– but even in worst case, get a 3/4 to 1/4 split 

– still gives O(log n) height  

  

0 4 6 8 1 2 3 5 
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Parallel Quicksort vs. Mergesort 

Parallelism (work / span) 
– quicksort:   O(n / log n)        avg case 

– mergesort:  O(n / log2 n)      worst case 
 


