
5/5/2016

1

1

CSE 332: Parallel Sorting

Richard Anderson

Spring 2016

2

Announcements

3

Recap

Last lectures

– simple parallel programs

– common patterns: map, reduce

– analysis tools (work, span, parallelism)

Now

– Amdahl’s Law

– Parallel quicksort, merge sort

– useful building blocks: prefix, pack

Analyzing Parallel Programs

Let TP be the running time on P processors

Two key measures of run-time:

• Work: How long it would take 1 processor = T1

• Span: How long it would take infinity processors = T

– The hypothetical ideal for parallelization

– This is the longest “dependence chain” in the computation

– Example: O(log n) for summing an array

– Also called “critical path length” or “computational depth”

4

Divide and Conquer Algorithms

Our fork and join frequently look like this:

base cases

divide

combine

results

In this context, the span (T) is:
•The longest dependence-chain; longest ‘branch’ in parallel ‘tree’

•Example: O(log n) for summing an array; we halve the data down to our

cut-off, then add back together; O(log n) steps, O(1) time for each

•Also called “critical path length” or “computational depth”

5

Parallel Speed-up

• Speed-up on P processors: T1 / TP

• If speed-up is P, we call it perfect linear speed-up

– e.g., doubling P halves running time

– hard to achieve in practice

• Parallelism is the maximum possible speed-up: T1 / T 

– if you had infinite processors

6

5/5/2016

2

Estimating Tp

• How to estimate TP (e.g., P = 4)?

• Lower bounds on TP (ignoring memory, caching...)

1. T 

2. T1 / P

– which one is the tighter (higher) lower bound?

• The ForkJoin Java Framework achieves the following

expected time asymptotic bound:

 TP ϵ O(T  + T1 / P)
– this bound is optimal

7

Amdahl’s Law

• Most programs have

1. parts that parallelize well

2. parts that don’t parallelize at all

• The latter become bottlenecks

8

Amdahl’s Law

• Let T1 = 1 unit of time

• Let S = proportion that can’t be parallelized

 1 = T1 = S + (1 – S)

• Suppose we get perfect linear speedup on the parallel portion:

 TP =

• So the overall speed-up on P processors is (Amdahl’s Law):

 T1 / T P =

 T1 / T  =

• If 1/3 of your program is parallelizable, max speedup is:

9

Pretty Bad News

• Suppose 25% of your program is sequential.

– Then a billion processors won’t give you more than a 4x

speedup!

• What portion of your program must be parallelizable

to get 10x speedup on a 1000 core GPU?

– 10 <= 1 / (S + (1-S)/1000)

• Motivates minimizing sequential portions of your

programs

10

Take Aways

• Parallel algorithms can be a big win

• Many fit standard patterns that are easy to implement

• Can’t just rely on more processors to make things

faster (Amdahl’s Law)

11 12

Parallelizable?

Fibonacci (N)

5/5/2016

3

13

Parallelizable?

Prefix-sum:

𝑜𝑢𝑡𝑝𝑢𝑡[𝑖] = 𝑖𝑛𝑝𝑢𝑡[𝑖]𝑖−1
0

input

output

6 3 11 10 8 2 7 8

14

First Pass: Sum

6 3 11 10 8 2 7 8

Sum [0,7]:

15

First Pass: Sum

Sum [0,7]:

Sum [0,3]: Sum [4,7]:

Sum [0,1]: Sum [2,3]: Sum [4,5]: Sum [5,7]:

6 3 11 10 8 2 7 8

16

2nd Pass: Use Sum for Prefix-Sum

Sum [0,7]:

Sum<0:

Sum [0,3]:

Sum<0:

Sum [4,7]:

Sum<4:

Sum [0,1]:

Sum<0:

Sum [2,3]:

Sum<2:

Sum [4,5]:

Sum<4:

Sum [6,7]:

Sum<6:

6 3 11 10 8 2 7 8

17

2nd Pass: Use Sum for Prefix-Sum
Sum [0,7]:

Sum<0:

Sum [0,3]:

Sum<0:

Sum [4,7]:

Sum<4:

Sum [0,1]:

Sum<0:

Sum [2,3]:

Sum<2:

Sum [4,5]:

Sum<4:

Sum [6,7]:

Sum<6:

6 3 11 10 8 2 7 8

Go from root down to leaves

Root

– sum<0 =

Left-child

– sum<K =

Right-child

– sum<K =
18

Prefix-Sum Analysis

• First Pass (Sum):

– span =

• Second Pass:

– single pass from root down to leaves

• update children’s sum<K value based on parent and sibling

– span =

• Total

– span =

5/5/2016

4

19

Parallel Prefix, Generalized

Prefix-sum is another common pattern (prefix problems)

– maximum element to the left of i

– is there an element to the left of i i satisfying some property?

– count of elements to the left of i satisfying some property

– …

We can solve all of these problems in the same way

20

Pack

Pack:

Output array of elements satisfying test, in original order

input

output

6 3 11 10 8 2 7 8 test: X < 8?

21

Parallel Pack?

Pack

•Determining which elements to include is easy

•Determining where each element goes in output is hard

– seems to depend on previous results

input

output 6 3 2 7

6 3 11 10 8 2 7 8 test: X < 8?

22

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

23

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. transform bit vector into array of indices into result array

1 2 3 4 pos

24

Parallel Pack

input

test 1 1 0 0 0 1 1 0

6 3 11 10 8 2 7 8 test: X < 8?

1. map test input, output [0,1] bit vector

2. prefix-sum on bit vector

1 2 2 2 2 3 4 4

3. map input to corresponding positions in output

pos

6 3 2 7

 - if (test[i] == 1) output[pos[i]] = input[i]

output

5/5/2016

5

25

Parallel Pack Analysis

• Parallel Pack

1. map: O() span

2. sum-prefix: O() span

3. map: O() span

• Total: O() span

26

Sequential Quicksort

Quicksort (review):

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B 2T(n/2), avg

Complexity (avg case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?

27

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O(n)

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = n + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

28

Taking it to the next level…

• O(log n) speed-up with infinite processors is okay, but

a bit underwhelming

– Sort 109 elements 30x faster

• Bottleneck:

29

Parallel Partition

Partition into sub-arrays
A. values less than pivot

B. values greater than pivot

What parallel operation can we use for this?

30

Parallel Partition

• Pick pivot

• Pack (test: <6)

• Right pack (test: >=6)

8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

5/5/2016

6

31

Parallel Quicksort

Quicksort

1. Pick a pivot O(1)

2. Partition into two sub-arrays O() span

A. values less than pivot

B. values greater than pivot

3. Recursively sort A and B in parallel T(n/2), avg

Complexity (avg case)
– T(n) = O() + T(n/2) T(0) = T(1) = 1

– Span: O()

– Parallelism (work/span) = O()

32

Sequential Mergesort

Mergesort (review):

1. Sort left and right halves 2T(n/2)

2. Merge results O(n)

Complexity (worst case)
– T(n) = n + 2T(n/2) T(0) = T(1) = 1

– O(n logn)

How to parallelize?
– Do left + right in parallel, improves to O(n)

– To do better, we need to…

33

Parallel Merge

How to merge two sorted lists in parallel?

0 4 6 8 9 1 2 3 5 7

34

Parallel Merge

1. Choose median M of left half O()

2. Split both arrays into < M, >=M O()

– how?

0 4 6 8 9 1 2 3 5 7

M

35

Parallel Merge

1. Choose median M of left half

2. Split both arrays into < M, >=M

– how?

3. Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

36

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

5/5/2016

7

37

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5

merge

6 8 9 7

merge

0 4 1 2 3 5 8 9

0 4 1 2 3 5 9

merge merge merge

0 4 1 2 3 5

0 4 1 2 3 5

merge merge

0 4 1 2 3 5 9 6 8 7

8

6 7

6 7

6 7

6 7

9 8

9 8

When we do each merge in parallel:

we split the bigger array in half

use binary search to split the smaller array

And in base case we copy to the output array

38

Parallel Mergesort Pseudocode

Merge(arr[], left1, left2, right1, right2, out[], out1, out2)

 int leftSize = left2 – left1

 int rightSize = right2 – right1

 // Assert: out2 – out1 = leftSize + rightSize

 // We will assume leftSize > rightSize without loss of generality

 if (leftSize + rightSize < CUTOFF)

 sequential merge and copy into out[out1..out2]

 int mid = (left2 – left1)/2

 binarySearch arr[right1..right2] to find j such that

 arr[j] ≤ arr[mid] ≤ arr[j+1]

 Merge(arr[], left1, mid, right1, j, out[], out1, out1+mid+j)

 Merge(arr[], mid+1, left2, j+1, right2, out[], out1+mid+j+1, out2)

39

Analysis

Parallel Merge (worst case)

– Height of partition call tree with n elements: O()

– Complexity of each thread (ignoring recursive call): O()

– Span: O()

Parallel Mergesort (worst case)

– Span: O()

– Parallelism (work / span): O()

Subtlety: uneven splits

– but even in worst case, get a 3/4 to 1/4 split

– still gives O(log n) height

0 4 6 8 1 2 3 5

40

Parallel Quicksort vs. Mergesort

Parallelism (work / span)
– quicksort: O(n / log n) avg case

– mergesort: O(n / log2 n) worst case

