
5/1/2016

1

1

CSE 332:
Intro to Parallelism:

Multithreading and Fork-Join

Richard Anderson

Spring 2016

2

Announcements

• Read parallel computing notes by Dan

Grossman 2.1-3.4

• Homework 5 – available Wednesday

• Exams – not graded yet

Sequential

• Sum up N numbers in an array

– Complexity?

3

Parallel Sum

• Sum up N numbers in an array

– with two processors

4

Parallel Sum

• Sum up N numbers in an array

– with N processors?

5

Parallel Sum

• Sum up N numbers in an array

• Complexity?

• How many processors?

• Faster with infinite processors?

6

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

5/1/2016

2

Changing a Major Assumption

• So far, we have assumed:

One thing happens at a time

• Called sequential programming

• Dominated until roughly 2005

– what changed?

7

A Simplified History

From roughly 1980-2005, desktop computers got exponentially

faster at running sequential programs

– About twice as fast every couple years

Writing parallel (multi-threaded) code is harder than sequential

– Especially in common languages like Java and C

But nobody knows how to continue this

– Increasing clock rate generates too much heat

– Relative cost of memory access is too high

– But we can keep making “wires exponentially smaller”

(Moore’s “Law”), so put multiple processors on the same

chip (“multicore”)

8

Who Implements Parallelism

• User

• Application

• Operating System

• Programming Language, Compiler

• Algorithm

• Processor Hardware

9

Parallelism vs. Concurrency

10

Parallelism:
 Use extra resources to

 solve a problem faster

resources

work

Concurrency:
 Manage access to shared

 resources

requests

resource

An analogy

A program is like a recipe for a cook

– Sequential: one cook who does one thing at a time

Parallelism: (Let’s get the job done faster!)

– Have lots of potatoes to slice?

– Hire helpers, hand out potatoes and knives

– But too many chefs and you spend all your time coordinating

Concurrency: (We need to manage a shared resource)

– Lots of cooks making different things, but only 4 stove burners

– Want to allow access to all 4 burners, but not cause spills or

incorrect burner settings

11

Shared Memory with Threads

Old story: A running program has

– One program counter (current statement executing)

– One call stack (with each stack frame holding local variables)

– Objects in the heap created by memory allocation (i.e., new)

• (nothing to do with data structure called a heap)

– Static fields

New story:

– A set of threads, each with its own program counter & call stack

• No access to another thread’s local variables

– Threads can share static fields / objects

• To communicate, write values to some shared location that

another thread reads from

12

5/1/2016

3

Old Story: one call stack, one pc

13

…

Heap for all objects

and static fields
• Call stack with local variables

• pc determines current statement

• local variables are numbers/null

 or heap references

pc=0x…

…

13

New Story: Shared Memory with Threads

…

Heap for all objects

and static fields, shared

by all threads
Threads, each with own unshared

call stack and “program counter”

pc=0x…

…

pc=0x…

…

pc=0x…

…

14

Other models

We will focus on shared memory, but you should know several

other models exist and have their own advantages (see notes)

• Message-passing: Each thread has its own collection of objects.

Communication is via explicitly sending/receiving messages

– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.

 A node executes after all of its predecessors in the graph

– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function

to every element of an array in parallel”

15

Our Needs

To write a shared-memory parallel program, need new primitives

from a programming language or library

• Ways to create and run multiple things at once

– Let’s call these things threads

• Ways for threads to share memory

– Often just have threads with references to the same objects

• Ways for threads to coordinate (a.k.a. synchronize)

– For now, a way for one thread to wait for another to finish

– Other primitives when we study concurrency

16

Threads vs. Processors

What happens if you start 5 threads on a machine with

only 4 processors?

17

Threads vs. Processors

For sum operation:

– with 3 processors available,

using 4 threads would take 50% more time than 3 threads

18

5/1/2016

4

Fork-Join Parallelism

1. Define thread
– Java: define subclass of java.lang.Thread, override run

2. Fork: instantiate a thread and start executing

– Java: create thread object, call start()

3. Join: wait for thread to terminate

– Java: call join() method, which returns when thread finishes

Above uses basic thread library build into Java

Later we’ll introduce a better ForkJoin Java library designed for

parallel programming

19

Sum with Threads
For starters: have 4 threads simultaneously sum ¼ of the array

 ans0 ans1 ans2 ans3

 +

 ans

– Create 4 thread objects, each given ¼ of the array

– Call start() on each thread object to run it in parallel

– Wait for threads to finish using join()

– Add together their 4 answers for the final result

20

Part 1: define thread class

21

class SumThread extends java.lang.Thread {

 int lo; // fields, passed to constructor
 int hi; // so threads know what to do.
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we must override a no-arguments/no-result run,

we use fields to communicate across threads

Part 2: sum routine

22

int sum(int[] arr){// can be a static method
 int len = arr.length;
 int ans = 0;
 SumThread[] ts = new SumThread[4];
 for(int i=0; i < 4; i++){// do parallel computations
 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
 ts[i].start();
 }
 for(int i=0; i < 4; i++) { // combine results
 ts[i].join(); // wait for helper to finish!
 ans += ts[i].ans;
 }
 return ans;
}

Parameterizing by number of

threads

23

int sum(int[] arr, int numTs){
 int ans = 0;
 SumThread[] ts = new SumThread[numTs];
 for(int i=0; i < numTs; i++){
 ts[i] = new SumThread(arr,(i*arr.length)/numTs,
 ((i+1)*arr.length)/numTs);
 ts[i].start();
 }
 for(int i=0; i < numTs; i++) {
 ts[i].join();
 ans += ts[i].ans;
 }
 return ans;
}

Recall: Parallel Sum

• Sum up N numbers in an array

• Let’s implement this with threads...

24

+ + + + + + + +

+ + + +

+ +

+

+ + + + + + + + + + + + + + + +

5/1/2016

5

Code looks something like this (using Java Threads)

The key is to do the result-combining in parallel

as well

– And using recursive divide-and-conquer makes

this natural

– Easier to write and more efficient asymptotically!

25

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr; // fields to know what to do
 int ans = 0; // result
 SumThread(int[] a, int l, int h) { … }
 public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}
int sum(int[] arr){ // just make one thread!
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Thread: sum range [0,10)

 Thread: sum range [0,5)

 Thread: sum range [0,2)

 Thread: sum range [0,1) (return arr[0])

 Thread: sum range [1,2) (return arr[1])

 add results from two helper threads

 Thread: sum range [2,5)

 Thread: sum range [2,3) (return arr[2])

 Thread: sum range [3,5)

 Thread: sum range [3,4) (return arr[3])

 Thread: sum range [4,5) (return arr[4])

 add results from two helper threads

 add results from two helper threads

 add results from two helper threads

 Thread: sum range [5,10)

 Thread: sum range [5,7)

 Thread: sum range [5,6) (return arr[5])

 Thread: sum range [6,7) (return arr[6])

 add results from two helper threads

 Thread: sum range [7,10)

 Thread: sum range [7,8) (return arr[7])

 Thread: sum range [8,10)

 Thread: sum range [8,9) (return arr[8])

 Thread: sum range [9,10) (return arr[9])

 add results from two helper threads

 add results from two helper threads

 add results from two helper threads

26

Recursive problem decomposition

Divide-and-conquer
Same approach useful for many problems beyond sum

– If you have enough processors, total time O(log n)

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style

– But using a special fork-join library engineered for this style

• Takes care of scheduling the computation well

– Often relies on operations being associative (like +)

27

+ + + + + + + +

+ + + +

+ +

+

Thread Overhead

Creating and managing threads incurs cost

Two optimizations:
1. Use a sequential cutoff, typically around 500-1000

• Eliminates lots of tiny threads

2. Do not create two recursive threads; create one thread and

do the other piece of work “yourself”

• Cuts the number of threads created by another 2x

28

Half the threads!

// wasteful: don’t
SumThread left = …
SumThread right = …

left.start();
right.start();

left.join();
right.join();
ans=left.ans+right.ans;

// better: do!!
SumThread left = …
SumThread right = …

left.start();
right.run();

left.join();
// no right.join needed
ans=left.ans+right.ans;

order of last 4 lines
Is critical – why?

Note: run is a

normal function call!

execution won’t

continue until we

are done with run

29

Better Java Thread Library

• Even with all this care, Java’s threads are too “heavyweight”

– Constant factors, especially space overhead

– Creating 20,000 Java threads just a bad idea

• The ForkJoin Framework is designed to meet the needs of divide-

and-conquer fork-join parallelism

– In the Java 7 standard libraries

• (Also available for Java 6 as a downloaded .jar file)

– Section will focus on pragmatics/logistics

– Similar libraries available for other languages

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks

• C#: Task Parallel Library

• …

30

5/1/2016

6

Different terms, same basic idea

To use the ForkJoin Framework:

• A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute

Don’t call start Do call fork

Don’t just call join Do call join (which returns answer)

Don’t call run to hand-optimize Do call compute to hand-optimize

Don’t have a topmost call to run Do create a pool and call invoke

See the web page for (linked in to project 3 description):

 “A Beginner’s Introduction to the ForkJoin Framework”

31

Fork Join Framework Version:
(missing imports)

32

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // fields to know what to do
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0; // local var, not a field
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork(); // fork a thread and calls compute
 int rightAns = right.compute();//call compute directly
 int leftAns = left.join(); // get result from left
 return leftAns + rightAns;
 }
 }
}
static final ForkJoinPool fjPool = new ForkJoinPool();
int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
 // invoke returns the value compute returns
}

