CSE 332:
Sorting lower bound Radix sort

Richard Anderson
Spring 2016

How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have O(N $\log N$) worst case running time.

These algorithms, along with Quicksort, also have O(N $\log N$) average case running time.

Can we do any better?

Permutations

- How many possible orderings can you get?
- Example: a, b, c ($N=3$)
- (abc), (a c b), (b a c), (b c a), (c a b), (c b a)
-6 orderings $=3 \cdot 2 \cdot 1=3$! (i.e., " 3 factorial")
- For N elements
- N choices for the first position, $(N-1)$ choices for the
second position, ..., (2) choices, 1 choice
$-N(N-1)(N-2) \cdots(2)(1)=N$! possible orderings

Announcements

- Midterm Friday
- 50 minutes, closed book
- Old exam linked from 332 web page

Permutations

- Suppose you are given N elements
- Assume no duplicates
- How many possible orderings can you get?
- Example: a, b, c $(N=3)$

Sorting Model

Recall our basic sorting assumption:
We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...

The leaves contain all the possible orderings of $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
- Finds correct leaf by choosing edges to follow
- i.e., by making comparisons
- We will focus on worst case run time
- Observations:
- Worst case run time \geq max number of comparisons
- Max number of comparisons
= length of the longest path in the decision tree
= tree height

Decision Trees

- A Decision Tree is a Binary Tree such that:
- Each node = a set of orderings
- i.e., the remaining solution space
- Each edge = 1 comparison
- Each leaf $=1$ unique ordering
- How many leaves for N distinct elements?
- Only 1 leaf has the ordering that is the desired correctly sorted arrangement

How many leaves on a tree?

Suppose you have a binary tree of height h. How many leaves in a perfect tree?

We can prune a perfect tree to make any binary tree of same height. Can \# of leaves increase?

Lower bound on Height

- A binary tree of height h has at most 2^{h} leaves - Can prove by induction
- A decision tree has N ! leaves. What is its minimum height?

An Alternative Explanation

At each decision point, one branch has $\leq 1 / 2$ of the options remaining, the other has $\geq 1 / 2$ remaining.
Worst case: we always end up with $\geq 1 / 2$ remaining.
Best algorithm, in the worst case: we always end up with exactly $1 / 2$ remaining.
Thus, in the worst case, the best we can hope for is halving the space d times (with d comparisons), until we have an answer, i.e., until the space is reduced to size $=1$.

The space starts at N ! in size, and halving d times means multiplying by $1 / 2^{d}$, giving us a lower bound on the worst case:

$$
\frac{N!}{2^{d}}=1 \Rightarrow N!=2^{d} \Rightarrow d=\log _{2}(N!)
$$

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that average case run time is also $\Omega(N$ $\log N$).

Can we do better if we don't use comparisons? (Huh?)

Can we sort in $\mathrm{O}(\mathrm{n})$?

- Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and B, create an array count of size B, increment counts while traversing the input, and finally output the result.

Example $B=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$

count array	
1	
2	
3	
4	
5	

Running time to sort \mathbf{n} items?

Dependence on B

What if B is very large (e.g., 2^{64})?

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea:
- BucketSort on one digit at a time
- After $\mathrm{k}^{\text {th }}$ sort, the last k digits are sorted
- Set number of buckets: $B=$ radix.

Radix Sort Example (1st pass)

This example uses $\mathrm{B}=10$ and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.
22

Radix Sort Example (3 ${ }^{\text {rd }}$ pass)

Radixsort: Complexity

In our examples, we had:

- Input size, N
- Number of buckets, $B=10$
- Maximum value, $\mathrm{M}<10^{3}$
- Number of passes, $\mathrm{P}=$

How much work per pass?

Total time?

Choosing the Radix

Run time is roughly proportional to:

$$
P(B+N)=\log _{B} M(B+N)
$$

Can show that this is minimized when:

$$
B \log _{e} B \approx N
$$

In theory, then, the best base (radix) depends only on N. For fast computation, prefer $B=2^{b}$. Then best b is:

$$
b+\log _{2} b \approx \log _{2} N
$$

Example:

$-N=1$ million (i.e., $\sim 2^{20}$) 64 bit numbers, $M=2^{64}$
$-\log _{2} N \approx 20 \rightarrow b=16$
$-B=2^{16}=65,536$ and $P=\log _{\left(2^{16}\right)} 2^{64}=4$.
In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Big Data: External Sorting

Goal: minimize disk/tape access time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

Sorting Summary

$O\left(N^{2}\right)$ average, worst case:

- Selection Sort, Bubblesort, Insertion Sort
$O(N \log N)$ average case:
- Heapsort: In-place, not stable.
- BST Sort: $O(N)$ extra space (including tree pointers, possibly poor memory locality), stable.
- Mergesort: $O(N)$ extra space, stable.
- Quicksort: claimed fastest in practice, but $O\left(N^{2}\right)$ worst case. Recursion/stack requirement. Not stable.
$\Omega(N \log N)$ worst and average case:
- Any comparison-based sorting algorithm
$O(N)$
- Radix Sort: fast and stable. Not comparison based. Not in-place. Poor memory locality can undercut performance.

