CSE 332: Sorting lower bound Radix sort

Richard Anderson Spring 2016

Announcements

• Midterm Friday

- 50 minutes, closed book

– Old exam linked from 332 web page

How fast can we sort?

Heapsort, Mergesort, Heapsort, AVL sort all have O(N log N) worst case running time.

These algorithms, along with Quicksort, also have O(N log N) **average** case running time.

Can we do any better?

Permutations

• Suppose you are given N elements

Assume no duplicates

• How many possible orderings can you get?

- Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - 6 orderings = 3.2.1 = 3! (i.e., "3 factorial")
- For *N* elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

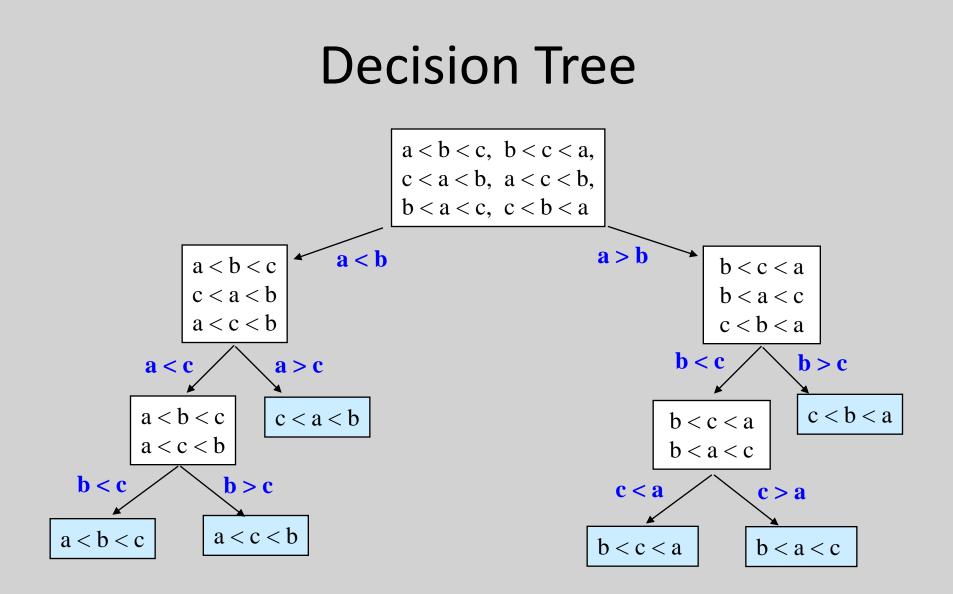
Sorting Model

Recall our basic sorting assumption:

We can only compare two elements at a time.

These comparisons prune the space of possible orderings.

We can represent these concepts in a...



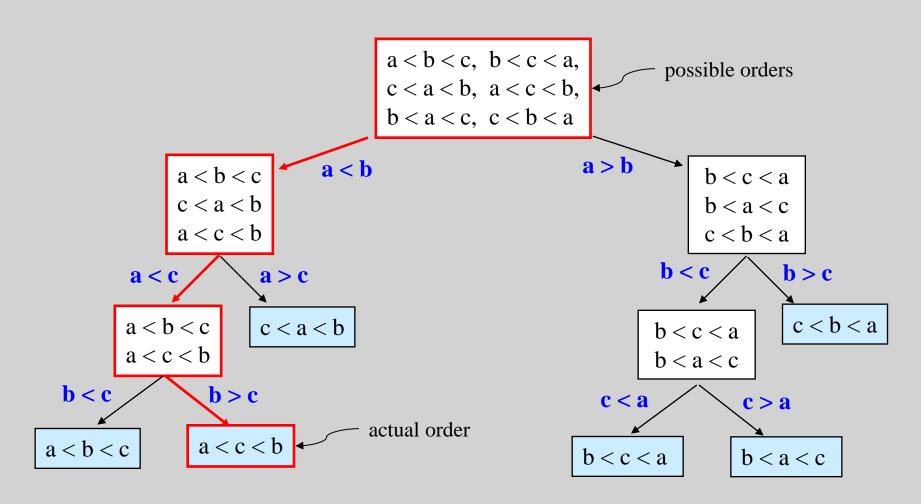
The leaves contain all the possible orderings of a, b, c.

Decision Trees

- A Decision Tree is a Binary Tree such that:
 - Each node = a set of orderings
 - i.e., the remaining solution space
 - Each edge = 1 comparison
 - Each leaf = 1 unique ordering
 - How many leaves for N distinct elements?

• Only 1 leaf has the ordering that is the desired correctly sorted arrangement

Decision Tree Example

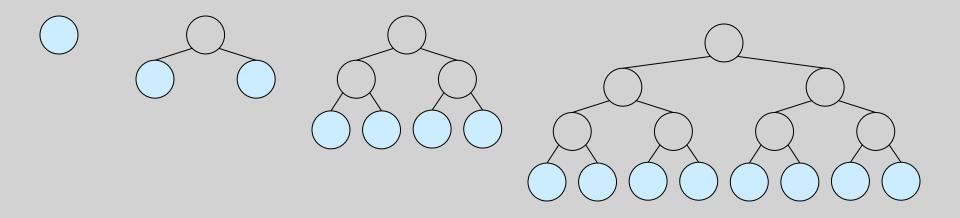


Decision Trees and Sorting

- Every sorting algorithm corresponds to a decision tree
 - Finds correct leaf by choosing edges to follow
 - i.e., by making comparisons
- We will focus on worst case run time
- Observations:
 - Worst case run time \geq max number of comparisons
 - Max number of comparisons
 = length of the longest path in the decision tree
 = tree height

How many leaves on a tree?

Suppose you have a binary tree of height *h*. How many leaves in a perfect tree?



We can prune a perfect tree to make any binary tree of same height. Can # of leaves increase?

Lower bound on Height

- A binary tree of height h has at most 2^h leaves
 - Can prove by induction
- A decision tree has N! leaves. What is its minimum height?

An Alternative Explanation

- At each decision point, one branch has $\leq \frac{1}{2}$ of the options remaining, the other has $\geq \frac{1}{2}$ remaining.
- Worst case: we always end up with $\geq \frac{1}{2}$ remaining.
- Best algorithm, in the worst case: we always end up with *exactly* ½ remaining.
- Thus, in the worst case, the best we can hope for is halving the space *d* times (with *d* comparisons), until we have an answer, i.e., until the space is reduced to size = 1.
- The space starts at N! in size, and halving d times means multiplying by $1/2^d$, giving us a lower bound on the worst case:

$$\frac{N!}{2^d} = 1 \implies N! = 2^d \implies d = \log_2(N!)$$

Lower Bound on log(N!)

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Stirling's approximation

$\Omega(N \log N)$

Worst case run time of any comparison-based sorting algorithm is $\Omega(N \log N)$.

Can also show that **average case** run time is also $\Omega(N \log N)$.

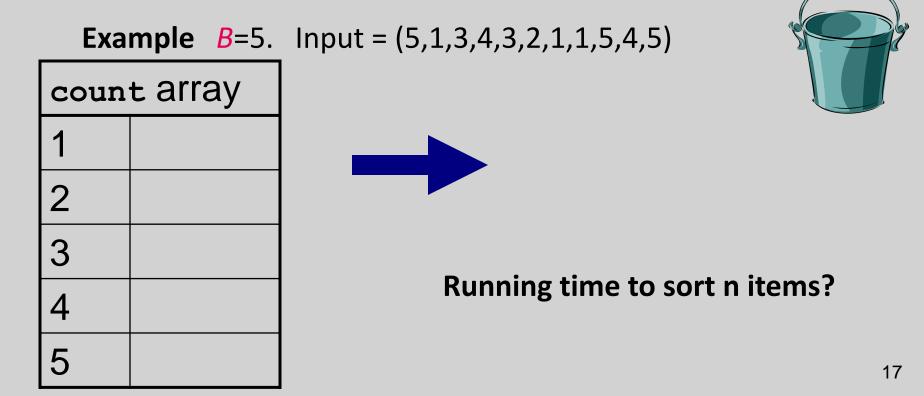
Can we do better if we don't use comparisons? (Huh?)

Can we sort in O(n)?

• Suppose keys are integers between 0 and 1000

BucketSort (aka BinSort)

If all values to be sorted are integers between 1 and *B*, create an array **count** of size *B*, **increment** counts while traversing the input, and finally output the result.



What about our $\Omega(n \log n)$ bound?

Dependence on B

What if **B** is very large (e.g., 2⁶⁴)?

Fixing impracticality: RadixSort

- RadixSort: generalization of BucketSort for large integer keys
- Origins go back to the 1890 census.
- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>:
 - BucketSort on one digit at a time
 - After kth sort, the last k digits are sorted
 - Set number of buckets: B = radix.

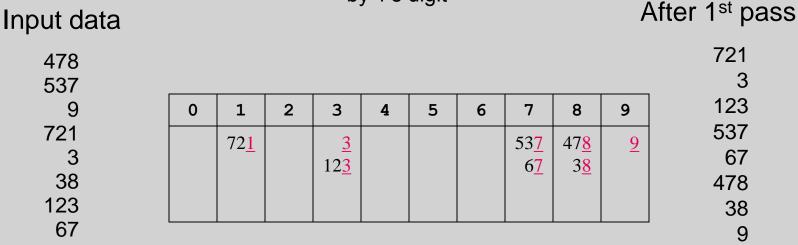
Radix Sort Example

Input: 478, 537, 9, 721, 3, 38, 123, 67

Output:

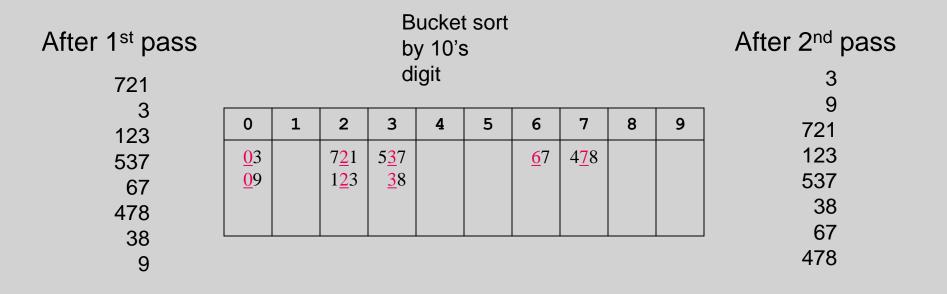
Radix Sort Example (1st pass)

Bucket sort by 1's digit

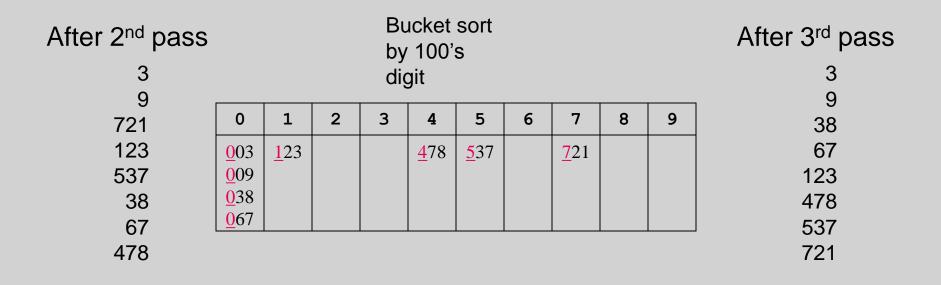


This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)



Radix Sort Example (3rd pass)



Invariant: after k passes the low order k digits are sorted.

Radixsort: Complexity

In our examples, we had:

- Input size, N
- Number of buckets, B = 10
- Maximum value, $M < 10^3$
- Number of passes, P =

How much work per pass?

Total time?

Choosing the Radix

Run time is roughly proportional to:

 $P(B+N) = \log_B M(B+N)$

Can show that this is minimized when:

 $B \log_e B \approx N$

In theory, then, the best base (radix) depends only on N.

For fast computation, prefer $B = 2^{b}$. Then best *b* is:

 $b + \log_2 b \approx \log_2 N$

Example:

- N = 1 million (i.e., ~2²⁰) 64 bit numbers, $M = 2^{64}$

$$-\log_2 N \approx 20 \rightarrow b = 16$$

$$-B = 2^{16} = 65,536$$
 and $P = \log_{(2^{16})} 2^{64} = 4$.

In practice, memory word sizes, space, other architectural considerations, are important in choosing the radix.

Big Data: External Sorting

Goal: **minimize disk/tape access** time:

- Quicksort and Heapsort both jump all over the array, leading to expensive random disk accesses
- Mergesort scans linearly through arrays, leading to (relatively) efficient sequential disk access

Basic Idea:

- Load chunk of data into Memory, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Mergesort can leverage multiple disks
- Weiss gives some examples

Sorting Summary

O(N²) average, worst case:

- Selection Sort, Bubblesort, Insertion Sort

O(N log N) average case:

- Heapsort: In-place, not stable.
- BST Sort: O(N) extra space (including tree pointers, possibly poor memory locality), stable.
- **Mergesort**: O(N) extra space, stable.
- Quicksort: claimed fastest in practice, but $O(N^2)$ worst case. Recursion/stack requirement. Not stable.

$\Omega(N \log N)$ worst and average case:

Any comparison-based sorting algorithm

O(N)

 Radix Sort: fast and stable. Not comparison based. Not in-place. Poor memory locality can undercut performance.